It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In winter, the water transfer channel of the Middle Route of South-to-North Water Transfer Project (MR-StNWTP) in China always encounters ice problems. The preciously simulation and prediction of water temperature is essential for analyzing the ice condition, which is important for the safety control of the water transfer channel in winter. Due to the difference of specific heat between water and air, when the air temperature rises and falls dramatically, the range of change of water temperature is relatively small and has a lag, which often affects the accuracy of simulation and prediction of water temperature based on air temperature. In the present study, a new approach for simulating and predicting water temperature in water transfer channels in winter has been proposed. By coupling the neural network theory to equations describing water temperature, a model has been developed for predicting water temperature. The temperature data of prototype observations in winter are preprocessed through the wavelet decomposition and noise reduction. Then, the wavelet soft threshold denoising method is used to eliminate the fluctuation of certain temperature data of prototype observations, and the corresponding water temperature is calculated afterward. Compared to calculation results using both general neural network and multiple regression approaches, the calculation results using the proposed model agree well with those of prototype measurements and can effectively improve the accuracy of prediction of water temperature.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Civil Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, Anhui, China
2 School of Engineering, University of Northern British Columbia, 3333 University Way, Prince George, BC, Canada
3 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing, China