Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The choice of precursor and simple synthesis techniques have decisive roles in the viable production and commercialization of carbon products. The intense demand for developing high-purity carbon nanomaterials through inexpensive techniques has promoted the usage of fossil derivatives as a feasible source of carbon. In this study, Vietnamese-coal-derived porous carbon (PC) was used to fabricate coal-derived porous carbon nanomaterials (CDPCs) using the modified Hummers method. The resulting porous carbon nanomaterials achieved a nanoscale structure with an average pore size ranging from 3 to 10 nm. The findings indicate that CDPC exhibits well-developed micropores and mesopores. The presence of macropores and mesopores not only facilitates the complete immersion of the material in the electrolyte but also effectively shortens the ion diffusion pathways. CDPC boasts a high carbon content, constituting 80.88% by weight. Electrochemical impedance spectroscopy (EIS) Nyquist plot of electrodes made from CDPC showed good conductivity value with low charge-transfer resistance. This electrode worked well and stably with capacitance retention of 74.7% after 1000 cycles. The CDPC specific capacitance reached 236 F/g under a current density of 0.1 A using the constant current discharge method and then decreased as the current density increased. Based on the results of the electrochemical properties of the materials, the energy storage capacity of the CDPC material was good and stable. This investigation presents an eco-friendly methodology for the judicious utilization of coal in energy storage applications, specifically as electrodes for supercapacitors and anodes for Li-ion batteries.

Details

Title
Synthesis of Porous Carbon Nanomaterials from Vietnamese Coal: Fabrication and Energy Storage Investigations
Author
Tra Huong Do 1 ; Van Tu Nguyen 2 ; Thi Nga Nguyen 1 ; Ha, Xuan Linh 3 ; Nguyen, Quoc Dung 1   VIAFID ORCID Logo  ; Thi Kim Ngan Tran 4   VIAFID ORCID Logo 

 Chemistry Faculty, Thai Nguyen University of Education, Thai Nguyen 250000, Vietnam; [email protected] (T.N.N.); [email protected] (Q.D.N.) 
 Institute Academy of Military Science and Technology, Ha Noi 100000, Vietnam; [email protected] 
 International School, Thai Nguyen University, Thai Nguyen 250000, Vietnam; [email protected] 
 Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh 700000, Vietnam 
First page
965
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2923932283
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.