Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Fracture zones in front of tunnel faces can easily cause falling blocks and landslides during the construction process. Using seismic waves and ground-penetrating radar (GPR) data, we extracted the features of fracture zones and achieved the advanced prediction of tunnel fracture zones. The energy variation in the reflected waves propagated by seismic waves at interfaces with different impedances of contact waves was found to manifest as positive and negative reflections, and the amplitude of reflected signals within the fracture zone areas thus increased. We designed a superimposed velocity spectrum, divided the areas of variation in wave velocity, and constructed the three-dimensional spatial distribution of the tunnel fracture zones. Based on the phase change, increase in amplitude, and increase in the center-frequency characteristics of the one-dimensional time waveform of the electromagnetic waves in the fault zone area (A-scan), we located the characteristic points of the fracture zones and observed the occurrence of in-phase axis misalignment in two-dimensional scanning (B-scan). We then implemented the identification of fracture zones. This method predicted the fractured area in the rock surrounding the Liangwangshan Tunnel, and during the tunnel excavation, the fracture zones appeared in the recognition area.

Details

Title
Recognition of Tunnel Fracture Zones in Seismic Waves and Ground-Penetrating Radar Data
Author
Li, Chuan 1 ; Wang, Haichun 1 ; Wang, Yunsheng 2 ; Wang, Lulu 1   VIAFID ORCID Logo  ; Yang, Xi 2   VIAFID ORCID Logo  ; Wan, Xiaorong 1 

 Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China 
 Yunnan Aerospace Engineering Geophysical Detecting Co., Ltd., Kunming 650200, China 
First page
1282
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2923934478
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.