Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Due to the non-linear and non-stationary nature of daily new 2019 coronavirus disease (COVID-19) case time series, existing prediction methods struggle to accurately forecast the number of daily new cases. To address this problem, a hybrid prediction framework is proposed in this study, which combines ensemble empirical mode decomposition (EEMD), fuzzy entropy (FE) reconstruction, and a CNN-LSTM-ATT hybrid network model. This new framework, named EEMD-FE-CNN-LSTM-ATT, is applied to predict the number of daily new COVID-19 cases. This study focuses on the daily new case dataset from the United States as the research subject to validate the feasibility of the proposed prediction framework. The results show that EEMD-FE-CNN-LSTM-ATT outperforms other baseline models in all evaluation metrics, demonstrating its efficacy in handling the non-linear and non-stationary epidemic time series. Furthermore, the generalizability of the proposed hybrid framework is validated on datasets from France and Russia. The proposed hybrid framework offers a new approach for predicting the COVID-19 pandemic, providing important technical support for future infectious disease forecasting.

Details

Title
Ensemble Prediction Method Based on Decomposition–Reconstitution–Integration for COVID-19 Outbreak Prediction
Author
Ke, Wenhui  VIAFID ORCID Logo  ; Lu, Yimin
First page
493
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2923945224
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.