Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cross-borehole electrical resistivity tomography (CHERT) technology has been implemented in field-scale CCS/CCUS (carbon capture and storage/carbon capture, utilization and storage) projects. It is highly desirable to investigate how to optimize the design of the ERT electrode arrays and corresponding working schemes for both laboratory experiments and field applications. A CHERT system was developed for laboratory experiments of CO2 geological storage applications. An optimization method was established for optimizing the structure of electrode arrays and corresponding working schemes. The developed CHERT system was calibrated systematically to determine the measurement range and accuracy of electrical impedance. Laboratory experiments were designed and implemented to validate the performance of the developed CHERT system. It has been illustrated that: (1) It is an essential step to optimize the structure of electrode arrays and corresponding working schemes of CHERT according to the real application background. The optimization method based on finite-element modelling provides an effective means for designing a field-scale CHERT system. (2) The quality of the images inverted from the CHERT data is highly dependent on the working schemes and specific modes, which is closely related to the size of the data sets used for the inversion. The AM-BN scheme is recommended due to the better uniformity of the resultant sensitivity field and application to larger borehole spacing. (3) Based on the calibration, the measurement range of the developed CHERT system can be determined as 100 Ω to 4.5 kΩ with an error limit of 1.5%. The maximum relative errors of the impedance magnitude and phase angle are 5.0% and 7.0%, respectively. Based on the test results the location of the CO2-bearing objects can be identified accurately. The shapes of the tested objects present distortion to some extent, but this can be alleviated by selecting working modes with a larger size of data set.

Details

Title
Cross-Borehole ERT Monitoring System for CO2 Geological Storage: Laboratory Development and Validation
Author
Jia, Ninghong 1 ; Wu, Chenyutong 2 ; Chang, He 1 ; Lv, Weifeng 1 ; Ji, Zemin 1 ; Xing, Lanchang 2   VIAFID ORCID Logo 

 State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, PetroChina, Beijing 100083, China 
 College of Control Science and Engineering, China University of Petroleum (East China), Qingdao 266580, China 
First page
710
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2923953223
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.