Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Estimating the geographic positions in GPS-denied environments is of great significance to the safe flight of unmanned aerial vehicles (UAVs). In this paper, we propose a novel geographic position estimation method for UAVs after road network alignment. We discuss the generally overlooked issue, namely, how to estimate the geographic position of the UAV after successful road network alignment, and propose a precise robust solution. In our method, the optimal initial solution of the geographic position of the UAV is first estimated from the road network alignment result, which is typically presented as a homography transformation between the observed road map and the reference one. The geographic position estimation is then modeled as an optimization problem to align the observed road with the reference one to improve the estimation accuracy further. Experiments on synthetic and real flight aerial image datasets show that the proposed algorithm can estimate more accurate geographic position of the UAV in real time and is robust to the errors from homography transformation estimation compared to the currently commonly-used method.

Details

Title
Geolocalization from Aerial Sensing Images Using Road Network Alignment
Author
Li, Yongfei 1   VIAFID ORCID Logo  ; Yang, Dongfang 1   VIAFID ORCID Logo  ; Wang, Shicheng 1 ; Shi, Lin 2 ; Meng, Deyu 2   VIAFID ORCID Logo 

 Xi’an Research Institute of Hi-Tech, Xi’an 710025, China; [email protected] (Y.L.); 
 Rearch Institute for Mathematics and Mathematical Technology, Xi’an Jiaotong University, Xi’an 710049, China 
First page
482
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2924002225
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.