It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Successes in biocatalytic polyester recycling have raised the possibility of deconstructing alternative polymers enzymatically, with polyamide (PA) being a logical target due to the array of amide-cleaving enzymes present in nature. Here, we screen 40 potential natural and engineered nylon-hydrolyzing enzymes (nylonases), using mass spectrometry to quantify eight compounds resulting from enzymatic nylon-6 (PA6) hydrolysis. Comparative time-course reactions incubated at 40-70 °C showcase enzyme-dependent variations in product distributions and extent of PA6 film depolymerization, with significant nylon deconstruction activity appearing rare. The most active nylonase, a NylCK variant we rationally thermostabilized (an N-terminal nucleophile (Ntn) hydrolase, NylCK-TS, Tm = 87.4 °C, 16.4 °C higher than the wild-type), hydrolyzes 0.67 wt% of a PA6 film. Reactions fail to restart after fresh enzyme addition, indicating that substrate-based limitations, such as restricted enzyme access to hydrolysable bonds, prohibit more extensive deconstruction. Overall, this study expands our understanding of nylonase activity distribution, indicates that Ntn hydrolases may have the greatest potential for further development, and identifies key targets for progressing PA6 enzymatic depolymerization, including improving enzyme activity, product selectivity, and enhancing polymer accessibility.
Polyamides (PAs) or nylons are types of plastics with wide applications, but due to their accumulation in the environment, strategies for their deconstruction are of interest. Here, the authors screen 40 potential nylon-hydrolyzing enzymes (nylonases) using a mass spectrometry-based approach and identify a thermostabilized N-terminal nucleophile hydrolase as the most promising for further development, as well as crucial targets for progressing PA6 enzymatic depolymerization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details






1 Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, USA (GRID:grid.419357.d) (ISNI:0000 0001 2199 3636); BOTTLE Consortium, Golden, USA (GRID:grid.419357.d)
2 Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, USA (GRID:grid.419357.d) (ISNI:0000 0001 2199 3636)
3 Battelle Memorial Institute, Columbus, USA (GRID:grid.27873.39) (ISNI:0000 0000 9568 9541)