Abstract

Deep Learning (DL) can predict biomarkers from cancer histopathology. Several clinically approved applications use this technology. Most approaches, however, predict categorical labels, whereas biomarkers are often continuous measurements. We hypothesize that regression-based DL outperforms classification-based DL. Therefore, we develop and evaluate a self-supervised attention-based weakly supervised regression method that predicts continuous biomarkers directly from 11,671 images of patients across nine cancer types. We test our method for multiple clinically and biologically relevant biomarkers: homologous recombination deficiency score, a clinically used pan-cancer biomarker, as well as markers of key biological processes in the tumor microenvironment. Using regression significantly enhances the accuracy of biomarker prediction, while also improving the predictions’ correspondence to regions of known clinical relevance over classification. In a large cohort of colorectal cancer patients, regression-based prediction scores provide a higher prognostic value than classification-based scores. Our open-source regression approach offers a promising alternative for continuous biomarker analysis in computational pathology.

Cancer biomarkers are often continuous measurements, which poses challenges for their prediction using classification-based deep learning. Here, the authors develop a regression-based deep learning method to predict continuous biomarkers - such as the homologous repair deficiency score - from cancer histopathology images.

Details

Title
Regression-based Deep-Learning predicts molecular biomarkers from pathology slides
Author
El Nahhas, Omar S. M. 1   VIAFID ORCID Logo  ; Loeffler, Chiara M. L. 2 ; Carrero, Zunamys I. 1   VIAFID ORCID Logo  ; van Treeck, Marko 1 ; Kolbinger, Fiona R. 3   VIAFID ORCID Logo  ; Hewitt, Katherine J. 1 ; Muti, Hannah S. 3 ; Graziani, Mara 4   VIAFID ORCID Logo  ; Zeng, Qinghe 5   VIAFID ORCID Logo  ; Calderaro, Julien 6 ; Ortiz-Brüchle, Nadina 7 ; Yuan, Tanwei 8 ; Hoffmeister, Michael 8 ; Brenner, Hermann 9   VIAFID ORCID Logo  ; Brobeil, Alexander 10 ; Reis-Filho, Jorge S. 11   VIAFID ORCID Logo  ; Kather, Jakob Nikolas 12   VIAFID ORCID Logo 

 TUD Dresden University of Technology, Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
 TUD Dresden University of Technology, Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Department of Medicine 1, Dresden, Germany (GRID:grid.412282.f) (ISNI:0000 0001 1091 2917) 
 TUD Dresden University of Technology, Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Department of Visceral, Thoracic and Vascular Surgery, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257) 
 University of Applied Sciences of Western Switzerland (HES-SO Valais), Sierre, Switzerland (GRID:grid.483301.d) (ISNI:0000 0004 0453 2100) 
 Sorbonne Université, Université Paris Cité, Centre d’Histologie, d’Imagerie et de Cytométrie (CHIC), Centre de Recherche des Cordeliers, INSERM, Paris, France (GRID:grid.508487.6) (ISNI:0000 0004 7885 7602) 
 Assistance Publique-Hôpitaux de Paris, Département de Pathologie, CHU Henri Mondor, Créteil, France (GRID:grid.412116.1) (ISNI:0000 0004 1799 3934) 
 University Hospital RWTH Aachen, Institute of Pathology, Aachen, Germany (GRID:grid.1957.a) (ISNI:0000 0001 0728 696X); Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Cologne, Germany (GRID:grid.1957.a) 
 German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584) 
 German Cancer Research Center (DKFZ), Division of Clinical Epidemiology and Aging Research, Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584); German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Division of Preventive Oncology, Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584); German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany (GRID:grid.7497.d) (ISNI:0000 0004 0492 0584) 
10  University Hospital Heidelberg, Institute of Pathology, Heidelberg, Germany (GRID:grid.5253.1) (ISNI:0000 0001 0328 4908); University Hospital Heidelberg, Tissue Bank, National Center for Tumor Diseases (NCT), Heidelberg, Germany (GRID:grid.5253.1) (ISNI:0000 0001 0328 4908) 
11  Memorial Sloan Kettering Cancer Center, Department of Pathology and Laboratory Medicine, New York, USA (GRID:grid.51462.34) (ISNI:0000 0001 2171 9952) 
12  TUD Dresden University of Technology, Else Kroener Fresenius Center for Digital Health, Medical Faculty Carl Gustav Carus, Dresden, Germany (GRID:grid.4488.0) (ISNI:0000 0001 2111 7257); University Hospital and Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Department of Medicine 1, Dresden, Germany (GRID:grid.412282.f) (ISNI:0000 0001 1091 2917); University of Leeds, Pathology & Data Analytics, Leeds Institute of Medical Research at St James’s, Leeds, United Kingdom (GRID:grid.9909.9) (ISNI:0000 0004 1936 8403); University Hospital Heidelberg, Medical Oncology, National Center for Tumor Diseases (NCT), Heidelberg, Germany (GRID:grid.5253.1) (ISNI:0000 0001 0328 4908) 
Pages
1253
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2924578428
Copyright
© The Author(s) 2024. corrected publication 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.