It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In recent years, corneal refractive surgery has been widely used in clinics as an effective means to restore vision and improve the quality of life. When choosing myopia-refractive surgery, it is necessary to comprehensively consider the differences in equipment and technology as well as the specificity of individual patients, which heavily depend on the experience of ophthalmologists. In our study, we took advantage of machine learning to learn about the experience of ophthalmologists in decision-making and assist them in the choice of corneal refractive surgery in a new case. Our study was based on the clinical data of 7,081 patients who underwent corneal refractive surgery between 2000 and 2017 at the Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences. Due to the long data period, there were data losses and errors in this dataset. First, we cleaned the data and deleted the samples of key data loss. Then, patients were divided into three groups according to the type of surgery, after which we used SMOTE technology to eliminate imbalance between groups. Six statistical machine learning models, including NBM, RF, AdaBoost, XGBoost, BP neural network, and DBN were selected, and a ten-fold cross-validation and grid search were used to determine the optimal hyperparameters for better performance. When tested on the dataset, the multi-class RF model showed the best performance, with agreement with ophthalmologist decisions as high as 0.8775 and Macro F1 as high as 0.8019. Furthermore, the results of the feature importance analysis based on the SHAP technique were consistent with an ophthalmologist’s practical experience. Our research will assist ophthalmologists in choosing appropriate types of refractive surgery and will have beneficial clinical effects.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer