It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Long-term care facilities (LTCFs) are vulnerable to disease outbreaks. Here, we jointly analyze SARS-CoV-2 genomic and paired epidemiologic data from LTCFs and surrounding communities in Washington state (WA) to assess transmission patterns during 2020–2022, in a setting of changing policy. We describe sequencing efforts and genomic epidemiologic findings across LTCFs and perform in-depth analysis in a single county.
Methods
We assessed genomic data representativeness, built phylogenetic trees, and conducted discrete trait analysis to estimate introduction sizes over time, and explored selected outbreaks to further characterize transmission events.
Results
We found that transmission dynamics among cases associated with LTCFs in WA changed over the course of the COVID-19 pandemic, with variable introduction rates into LTCFs, but decreasing amplification within LTCFs. SARS-CoV-2 lineages circulating in LTCFs were similar to those circulating in communities at the same time. Transmission between staff and residents was bi-directional.
Conclusions
Understanding transmission dynamics within and between LTCFs using genomic epidemiology on a broad scale can assist in targeting policies and prevention efforts. Tracking facility-level outbreaks can help differentiate intra-facility outbreaks from high community transmission with repeated introduction events. Based on our study findings, methods for routine tree building and overlay of epidemiologic data for hypothesis generation by public health practitioners are recommended. Discrete trait analysis added valuable insight and can be considered when representative sequencing is performed. Cluster detection tools, especially those that rely on distance thresholds, may be of more limited use given current data capture and timeliness. Importantly, we noted a decrease in data capture from LTCFs over time. Depending on goals for use of genomic data, sentinel surveillance should be increased or targeted surveillance implemented to ensure available data for analysis.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer