It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
This retrospective study aimed to develop a deep learning algorithm for the interpretation of panoramic radiographs and to examine the performance of this algorithm in the detection of periodontal bone losses and bone loss patterns.
Methods
A total of 1121 panoramic radiographs were used in this study. Bone losses in the maxilla and mandibula (total alveolar bone loss) (n = 2251), interdental bone losses (n = 25303), and furcation defects (n = 2815) were labeled using the segmentation method. In addition, interdental bone losses were divided into horizontal (n = 21839) and vertical (n = 3464) bone losses according to the defect patterns. A Convolutional Neural Network (CNN)-based artificial intelligence (AI) system was developed using U-Net architecture. The performance of the deep learning algorithm was statistically evaluated by the confusion matrix and ROC curve analysis.
Results
The system showed the highest diagnostic performance in the detection of total alveolar bone losses (AUC = 0.951) and the lowest in the detection of vertical bone losses (AUC = 0.733). The sensitivity, precision, F1 score, accuracy, and AUC values were found as 1, 0.995, 0.997, 0.994, 0.951 for total alveolar bone loss; found as 0.947, 0.939, 0.943, 0.892, 0.910 for horizontal bone losses; found as 0.558, 0.846, 0.673, 0.506, 0.733 for vertical bone losses and found as 0.892, 0.933, 0.912, 0.837, 0.868 for furcation defects (respectively).
Conclusions
AI systems offer promising results in determining periodontal bone loss patterns and furcation defects from dental radiographs. This suggests that CNN algorithms can also be used to provide more detailed information such as automatic determination of periodontal disease severity and treatment planning in various dental radiographs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer