It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Human saliva as a bodily fluid—similar to blood—is utilized for diagnostic purposes. Unlike blood sampling, collecting saliva is non-invasive, inexpensive, and readily accessible. There are no previously published systematic reviews regarding different collection, transportation, preparation, and storage methods for human saliva.
Design
This study has been prepared and organized according to the preferred reporting items for systematic reviews and meta-analyses (PRISMA) 2020 guidelines. This systematic review has been registered at PROSPERO (Registration ID: CRD42023415384). The study question according to the PICO format was as followed: Comparison of the performance (C) of different saliva sampling, handling, transportation, and storage techniques and methods (I) assessed for analyzing stimulated or unstimulated human saliva (P and O). An electronic search was executed in Scopus, Google Scholar, and PubMed.
Results
Twenty-three descriptive human clinical studies published between 1995 and 2022 were included. Eight categories of salivary features and biomarkers were investigated (i.e., salivary flow rate, total saliva quantity, total protein, cortisol, testosterone, DNA quality and quantity, pH and buffering pH). Twenty-two saliva sampling methods/devices were utilized. Passive drooling, Salivette®, and spitting were the most utilized methods. Sampling times with optimum capabilities for cortisol, iodine, and oral cancer metabolites are suggested to be 7:30 AM to 9:00 AM, 10:30 AM to 11:00 AM, and 14:00 PM to 20:00 PM, respectively. There were 6 storage methods. Centrifuging samples and storing them at -70 °C to -80 °C was the most utilized storage method. For DNA quantity and quality, analyzing samples immediately after collection without centrifuging or storage, outperformed centrifuging samples and storing them at -70 °C to -80 °C. Non-coated Salivette® was the most successful method/device for analyzing salivary flow rate.
Conclusion
It is highly suggested that scientists take aid from the reported categorized outcomes, and design their study questions based on the current voids for each method/device.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer