It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Seamless phase 2/3 design has become increasingly popular in clinical trials with a single endpoint. Trials that define success based on the achievement of all co-primary endpoints (CPEs) encounter the challenge of inflated type 2 error rates, often leading to an overly large sample size. To tackle this challenge, we introduced a seamless phase 2/3 design strategy that employs Bayesian predictive power (BPP) for futility monitoring and sample size re-estimation at interim analysis. The correlations among multiple CPEs are incorporated using a Dirichlet-multinomial distribution. An alternative approach based on conditional power (CP) was also discussed for comparison. A seamless phase 2/3 vaccine trial employing four binary endpoints under the non-inferior hypothesis serves as an example. Our results spotlight that, in scenarios with relatively small phase 2 sample sizes (e.g., 50 or 100 subjects), the BPP approach either outperforms or matches the CP approach in terms of overall power. Particularly, with n1 = 50 and ρ = 0, BPP showcases an overall power advantage over CP by as much as 8.54%. Furthermore, when the phase 2 stage enrolled more subjects (e.g., 150 or 200), especially with a phase 2 sample size of 200 and ρ = 0, the BPP approach evidences a peak difference of 5.76% in early stop probability over the CP approach, emphasizing its better efficiency in terminating futile trials. It’s noteworthy that both BPP and CP methodologies maintained type 1 error rates under 2.5%. In conclusion, the integration of the Dirichlet-Multinominal model with the BPP approach offers improvement in certain scenarios over the CP approach for seamless phase 2/3 trials with multiple CPEs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer