It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Low-cost cellulase production is vital to sustainable second-generation biorefineries. The catabolically derepressed strain of Penicillium funiculosum NCIM1228 (PfMig188 or ∆Mig1) secretes a superior set of cellulolytic enzymes, that are most suitable for 2G biorefineries. At a 3% (w/w) load, the ∆Mig1 secretome can release > 80% of fermentable sugars from lignocellulose at a 15% (w/v) biomass load, irrespective of the type of biomass and pretreatment. The robustness of the secretome can be further increased by improving the cellulase production capacity of the fungal strain.
Results
We began by identifying the transcription factor responsible for cellulase production in NCIM1228. An advanced RNA-seq screen identified three genes, clr-2, ctf1a and ctf1b; the genes were cloned under their native promoters and transformed into NCIM1228. Of the three, clr-2 overexpression led to twofold higher cellulase production than the parent strain and was thus identified as the transcriptional activator of cellulase in NCIM1228. Next, we overexpressed clr-2 in ∆Mig1 and expected an exponential increase in cellulolytic attributes accredited to the reinforced activation mechanisms, conjoint with diminished negative regulation. Although clr-2 overexpression increased the transcript levels of cellulase genes in ∆Mig1, there was no increase in cellulase yield. Even a further increase in the transcript levels of clr-2 via a stronger promoter was ineffective. However, when the CaCO3 concentration was increased to 5 g/l in the growth medium, we achieved a 1.5-fold higher activity of 6.4 FPU/ml in the ∆Mig1 strain with clr-2 overexpression. Enthused by the calcium effect, a transcriptomic screen for genes encoding Ca2+-activated kinase identified ssp1, whose overexpression could further increase cellulase yield to ~ 7.5 FPU/ml. Investigation of the mechanism revealed that calcium signaling exclusively enhances the translation and secretion of cellulase in Penicillium funiculosum.
Conclusions
Our study identifies for the first time that cellulose activates two discrete signaling events to govern cellulase transcription and posttranscriptional processes (translation, processing and secretion) in P. funiculosum NCIM1228. Whereas Clr-2, the transcriptional activator of cellulase, governs transcription, calcium signaling specifically activates cellulase translation and secretion.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer