It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The enrichment of peri-cancerous adipose tissue is a distinctive feature of colorectal cancer (CRC), accelerating disease progression and worsening prognosis. The communication between tumor cells and adjacent adipocytes plays a crucial role in CRC advancement. However, the precise regulatory mechanisms are largely unknown. This study aims to explore the mechanism of migration and invasion inhibitory protein (MIIP) downregulation in the remodeling of tumor cell-adipocyte communication and its role in promoting CRC.
Results
MIIP expression was found to be decreased in CRC tissues and closely associated with adjacent adipocyte browning. In an in vitro co-culture model, adipocytes treated with MIIP-downregulated tumor supernatant exhibited aggravated browning and lipolysis. This finding was further confirmed in subcutaneously allografted mice co-injected with adipocytes and MIIP-downregulated murine CRC cells. Mechanistically, MIIP interacted with the critical lipid mobilization factor AZGP1 and regulated AZGP1’s glycosylation status by interfering with its association with STT3A. MIIP downregulation promoted N-glycosylation and over-secretion of AZGP1 in tumor cells. Subsequently, AZGP1 induced adipocyte browning and lipolysis through the cAMP-PKA pathway, releasing free fatty acids (FFAs) into the microenvironment. These FFAs served as the primary energy source, promoting CRC cell proliferation, invasion, and apoptosis resistance, accompanied by metabolic reprogramming. In a tumor-bearing mouse model, inhibition of β-adrenergic receptor or FFA uptake, combined with oxaliplatin, significantly improved therapeutic efficacy in CRC with abnormal MIIP expression.
Conclusions
Our data demonstrate that MIIP plays a regulatory role in the communication between CRC and neighboring adipose tissue by regulating AZGP1 N-glycosylation and secretion. MIIP reduction leads to AZGP1 oversecretion, resulting in adipose browning-induced CRC rapid progression and poor prognosis. Inhibition of β-adrenergic receptor or FFA uptake, combined with oxaliplatin, may represent a promising therapeutic strategy for CRC with aberrant MIIP expression.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer