Abstract

Nanophononic materials are characterized by a periodic nanostructuration, which may lead to coherent scattering of phonons, enabling interference and resulting in modified phonon dispersions. We have used the extreme ultraviolet transient grating technique to measure phonon frequencies and lifetimes in a low-roughness nanoporous phononic membrane of SiN at wavelengths between 50 and 100 nm, comparable to the nanostructure lengthscale. Surprisingly, phonon frequencies are only slightly modified upon nanostructuration, while phonon lifetime is strongly reduced. Finite element calculations indicate that this is due to coherent phonon interference, which becomes dominant for wavelengths between ~ half and twice the inter-pores distance. Despite this, vibrational energy transport is ensured through an energy flow among the coherent modes created by reflections. This interference of phonon echos from periodic interfaces is likely another aspect of the mutual coherence effects recently highlighted in amorphous and complex crystalline materials and, in this context, could be used to tailor transport properties of nanostructured materials.

Coherent scattering of phonons in a periodic nanostructure leads to interference, which modifies phonon energies. Here, authors observed that a strong interference effect also influences phonon lifetime. Despite its reduction, energy transport is conserved thanks to a hopping of energy among the reflected waves.

Details

Title
The effect of echoes interference on phonon attenuation in a nanophononic membrane
Author
Hadi, Mohammad 1   VIAFID ORCID Logo  ; Luo, Haoming 2 ; Pailhès, Stéphane 1 ; Tanguy, Anne 3   VIAFID ORCID Logo  ; Gravouil, Anthony 3 ; Capotondi, Flavio 4   VIAFID ORCID Logo  ; De Angelis, Dario 4   VIAFID ORCID Logo  ; Fainozzi, Danny 4   VIAFID ORCID Logo  ; Foglia, Laura 4   VIAFID ORCID Logo  ; Mincigrucci, Riccardo 4   VIAFID ORCID Logo  ; Paltanin, Ettore 4   VIAFID ORCID Logo  ; Pedersoli, Emanuele 4   VIAFID ORCID Logo  ; Pelli-Cresi, Jacopo S. 4 ; Bencivenga, Filippo 4 ; Giordano, Valentina M. 1   VIAFID ORCID Logo 

 CNRS, Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne cedex, France (GRID:grid.436142.6) (ISNI:0000 0004 0384 4911) 
 CNRS, Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, Villeurbanne cedex, France (GRID:grid.436142.6) (ISNI:0000 0004 0384 4911); CNRS UMR5259, Université de Lyon, LaMCos, INSA-Lyon, Villeurbanne Cedex, France (GRID:grid.7849.2) (ISNI:0000 0001 2150 7757); LMS, CNRS, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France (GRID:grid.463926.c) (ISNI:0000 0001 2287 9755) 
 CNRS UMR5259, Université de Lyon, LaMCos, INSA-Lyon, Villeurbanne Cedex, France (GRID:grid.7849.2) (ISNI:0000 0001 2150 7757) 
 Elettra Sincrotrone Trieste S.c.P.A., Basovizza, Italy (GRID:grid.5942.a) (ISNI:0000 0004 1759 508X) 
Pages
1317
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2925767202
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.