It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In recent years, the demand for flexible and sustainable strategies in digitization processes has represented a significant challenge for the heritage documentation research community. In particular, the tasks of parametric modelling and AI-based semantic enrichment operations, necessary but traditionally time-consuming, is extremely onerous from a user-oriented perspective. Many efforts of the research community have been dedicated to enhancing efficiency through automation, and one of the possible solutions is represented by the employment of machine learning strategies. This study introduces an innovative methodology that integrates Visual Programming Language platforms and 3D Python libraries, thereby implementing the Scan-to-BIM approach. Two case studies - characterized by varying scales, resolutions, and accuracies - have been analysed to validate the proposed pipeline, demonstrating its flexibility and scalability across architectural objects and archaeological assets belonging to museum collections. The workflow involves several steps, starting from classified 3D and 2D data segmented using machine learning techniques with the aim of managing semantically enriched reality-based data in BIM/HBIM environment without scarifying accuracy criteria. Results highlight the methodology's efficiency and adaptability in diverse contexts, offering a compelling alternative to labour-intensive Scan-to-BIM processes. Ultimately, this methodology contributes to the automation in cultural heritage digitisation, underlining the need for comprehensive standards and protocols in this dynamic domain.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Department of Architecture and Design (DAD), Politecnico di Torino, Torino, Italy; Department of Architecture and Design (DAD), Politecnico di Torino, Torino, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy
2 Department of Architecture and Design (DAD), Politecnico di Torino, Torino, Italy; Department of Architecture and Design (DAD), Politecnico di Torino, Torino, Italy
3 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy; 3D Optical Metrology (3DOM) unit, Bruno Kessler Foundation (FBK), Trento, Italy