It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Biotechnological plastic recycling has emerged as a suitable option for addressing the pollution crisis. A major breakthrough in the biodegradation of poly(ethylene terephthalate) (PET) is achieved by using a LCC variant, which permits 90% conversion at an industrial level. Despite the achievements, its applications have been hampered by the remaining 10% of nonbiodegradable PET. Herein, we address current challenges by employing a computational strategy to engineer a hydrolase from the bacterium HR29. The redesigned variant, TurboPETase, outperforms other well-known PET hydrolases. Nearly complete depolymerization is accomplished in 8 h at a solids loading of 200 g kg−1. Kinetic and structural analysis suggest that the improved performance may be attributed to a more flexible PET-binding groove that facilitates the targeting of more specific attack sites. Collectively, our results constitute a significant advance in understanding and engineering of industrially applicable polyester hydrolases, and provide guidance for further efforts on other polymer types.
The application of the LCC variant of polyethylene terephthalate (PET) hydrolase for industrial degradation of PET has been hindered by the 10% of nonbiodegradable PET. Here, the authors use a computational strategy to engineer TurboPETase which outperforms other PETase variants and achieves nearly complete depolymerization of the postconsumer PET bottles at a high, industrially relevant, level of solids loading.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Chinese Academy of Sciences, AIM Center, Institute of Microbiology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309)
2 Chinese Academy of Sciences, AIM Center, Institute of Microbiology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
3 Chinese Academy of Sciences, AIM Center, Institute of Microbiology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); Nankai University, College of Chemistry, Tianjin, China (GRID:grid.216938.7) (ISNI:0000 0000 9878 7032)