It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The metasurface refractive index sensor has a high degree of tunability and flexibility, providing excellent performance for high precision refractive index sensing applications. The metasurface absorber with metallic structure has been hindered in further sensor applications due to the inherent Ohmic loss of the metallic material. In this study, a dual nanorod metasurface structure based on semiconductor Si was designed, introducing a symmetry-breaking structure to excite dual ultra-narrow q-BIC resonance peaks with Fano line shapes. Both peaks are located in the near-infrared region, and multipole analysis shows that this strong field enhancement effect is induced by a magnetic dipole. Experimental results demonstrate the potential of this sensor to provide dual-channel detection while achieving high sensitivity and high Q-factor. We believe that this device exhibits outstanding performance and high practicality, providing a reference for the development and application of biological and environmental sensors.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jinlin 130033, China; University of Chinese Academy of Sciences, Beijing 100049, China
2 Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, Jinlin 130033, China