It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Vortex beams carrying orbital angular momentum (OAM) are considered to hold significant prospects in fields such as super-resolution imaging, high-capacity communications, and quantum optics. Therefore, the techniques of vortex beam generation have attracted extensive studies, in which the development of metasurfaces brings new vigor and vitality to it. However, the generation of reconfigurable vortex beams by metasurfaces at the incidence of arbitrary polarized electromagnetic (EM) waves holds challenges. In this study, an efficient and reconfigurable strategy utilizing PB phase-modulated circularly polarized waves and dynamic phase-modulated linearly polarized waves is proposed, enabling a polarization-locked fully polarization vortex beams generator. Based on this strategy, we designed and fabricated a prototype of the vortex beam generator for full polarization, which verifies the rotating Doppler effect and generates a time-varying vortex beam. All the results have been verified by simulation and measurements. In addition, the proposed strategy can be easily extended to other frequency regions and holds potential in areas such as information encryption, biosensing, and OAM multiplexing communication.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shaanxi Key Laboratory of Artificially-Structured Functional Materials and Devices, Air Force Engineering University, Xi’an, Shaanxi 710051, China