Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Antimicrobial resistance (AMR) has become an alarming threat to the successful treatment of rapidly growing bacterial infections due to the abuse and misuse of antibiotics. Traditional antibiotics bear many limitations, including restricted bioavailability, inadequate penetration and the emergence of antimicrobial-resistant microorganisms. Recent advances in nanotechnology for the introduction of nanoparticles with fascinating physicochemical characteristics have been predicted as an innovative means of defence against antimicrobial-resistant diseases. The use of nanoparticles provides several benefits, including improved tissue targeting, better solubility, improved stability, enhanced epithelial permeability and causes minimal side effects. However, except for gold nanoparticles (AuNPs), the biological safety of the majority of metal nanoparticles remains a serious problem. AuNPs appear to be promising for drug delivery and medicinal applications because of their minimal toxicity, biocompatibility, functional flexibility, chemical stability and versatile biological activities, such as their antiviral, antifungal, anti-inflammatory and antimicrobial properties. Hence, we are focusing on the gold nanoparticles possessing antimicrobial activity in this article. This review will cover recent strategies in the preparation of gold nanoparticles, with special emphasis placed on antibiotics-coated AuNPs with enhanced antimicrobial properties and how they fight against disease-causing bacteria and eradicate biofilms, along with their activities and physicochemical properties.

Details

Title
Recent Advances in the Development of Antibiotics-Coated Gold Nanoparticles to Combat Antimicrobial Resistance
Author
Sarma, Partha Pratim 1 ; Rai, Akhilesh 2 ; Baruah, Pranjal K 1   VIAFID ORCID Logo 

 Department of Applied Sciences, GUIST, Gauhati University, Guwahati 781014, Assam, India 
 CNC—Center for Neuroscience and Cell Biology and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 000-447 Coimbra, Portugal 
First page
124
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20796382
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930471594
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.