Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Retinitis pigmentosa is a common cause of inherited blindness in adults, which in many cases is associated with an increase in the formation of reactive oxygen species (ROS) that induces DNA damage, triggering Poly-ADP-Ribose Polymerase 1 (PARP1) activation and leading to parthanatos-mediated cell death. Previous studies have shown that resveratrol (RSV) is a promising molecule that can mitigate PARP1 overactivity, but its low bioavailability is a limitation for medical use. This study examined the impact of a synthesized new acylated RSV prodrug, piceid octanoate (PIC-OCT), in the 661W cell line against H2O2 oxidative stress and in rd10 mice. PIC-OCT possesses a better ADME profile than RSV. In response to H2O2, 661W cells pretreated with PIC-OCT preserved cell viability in more than 38% of cells by significantly promoting SIRT1 nuclear translocation, preserving NAD+/NADH ratio, and suppressing intracellular ROS formation. These effects result from expressing antioxidant genes, maintaining mitochondrial function, reducing PARP1 nuclear expression, and preventing AIF nuclear translocation. In rd10 mice, PIC-OCT inhibited PAR-polymer formation, increased SIRT1 expression, significantly reduced TUNEL-positive cells in the retinal outer nuclear layer, preserved ERGs, and enhanced light chamber activity (all p values < 0.05). Our findings corroborate that PIC-OCT protects photoreceptors by modulating the SIRT1/PARP1 axis in models of retinal degeneration.

Details

Title
Piceid Octanoate Protects Retinal Cells against Oxidative Damage by Regulating the Sirtuin 1/Poly-ADP-Ribose Polymerase 1 Axis In Vitro and in rd10 Mice
Author
Moshtaghion, Seyed Mohamadmehdi 1 ; Caballano-Infantes, Estefanía 1 ; Álvaro Plaza Reyes 1   VIAFID ORCID Logo  ; Valdés-Sánchez, Lourdes 1   VIAFID ORCID Logo  ; Patricia Gallego Fernández 1 ; de la Cerda, Berta 1   VIAFID ORCID Logo  ; Riga, Maurizio S 1 ; Álvarez-Dolado, Manuel 1   VIAFID ORCID Logo  ; Peñalver, Pablo 2   VIAFID ORCID Logo  ; Morales, Juan C 2   VIAFID ORCID Logo  ; Díaz-Corrales, Francisco J 1   VIAFID ORCID Logo 

 Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain; [email protected] (S.M.M.); [email protected] (Á.P.R.); [email protected] (L.V.-S.); [email protected] (P.G.F.); [email protected] (B.d.l.C.); [email protected] (M.S.R.); [email protected] (M.Á.-D.) 
 Department of Biochemistry and Molecular Pharmacology, Institute of Parasitology and Biomedicine López-Neyra (IPBLN), PTS-Granada, Avda. del Conocimiento, 17, 18016 Granada, Spain; [email protected] (P.P.); [email protected] (J.C.M.) 
First page
201
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763921
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930477964
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.