Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Prodigiosin (PG) is a secondary metabolite produced by Serratia marcescens which has a promising future in food, textile, and other industries due to its bright color and diverse biological activities. Currently, the production of PG is mainly restricted by the components of the fermentation medium and large losses during its extraction process, making large-scale industrial production impossible. In this study, a Box–Behnken design (BBD) was used to optimize the response surface of the fermentation medium of S. marcescens. The optimum medium composition was found to be sucrose, 16.29 g/L; peptone, 11.76 g/L; and tween 80, 2.64 g/L. This composition produced a PG amount of 1653.95 ± 32.12 mg/L, which is a 64-fold increase compared to the initial medium. A Box–Behnken design (BBD) was then used to optimize the response surface of the extraction process of PG, aiming to reduce loss during extraction. The optimal extraction conditions were determined to be a solvent fermentation liquid ratio of 9.12:1, an extraction temperature of 25.35 °C, and an extraction time of 30.33 min. These conditions resulted in a final PG production amount of 2142.75 ± 12.55 mg/L, which was nearly 84 times higher than the initial production amount of PG. These results provide essential theoretical and experimental support for the industrial production of PG.

Details

Title
Two-Step Optimization for Improving Prodigiosin Production Using a Fermentation Medium for Serratia marcescens and an Extraction Process
Author
Wang, Xin  VIAFID ORCID Logo  ; Cui, Zhihao; Zhang, Zongyu; Zhao, Jiacheng; Liu, Xiaoquan; Meng, Guangfan; Zhang, Jing; Zhang, Jie  VIAFID ORCID Logo 
First page
85
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23115637
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930750229
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.