Full text

Turn on search term navigation

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper investigates and reveals the effect of the high-temperature transient creep on the structural performance of RC walls under fire. A theoretical model is established, which explicitly includes the transient creep and accounts for the explosive spalling, the material, and geometric nonlinearities under fire. The effects of the transient creep on the structural response and fire resistance of RC walls with little spalling and with explosive spalling are investigated, respectively, with elucidation of the mechanisms. The influences of wall geometries, concrete properties, and the eccentricity of load on the effect of the transient creep are quantitatively studied. Finally, the results are validated through comparison with tests in the literature. It is revealed that the transient creep significantly reduces the fire resistance of RC walls with little spalling by up to and greater than 60%, by decreasing the deflection toward the heated side. However, it increases the fire resistance of RC walls with explosive spalling by up to about 40% by reducing the spalling extent due to the stress relaxation effect. The stress relaxation effect of the transient creep has a crucial role in determining the spalling manner. The load level, the eccentricity of load, and the wall geometries are key influencing factors which have contrary influences on the effect of the transient creep on the fire resistance of RC walls with little spalling and with explosive spalling.

Details

Title
Effect of Transient Creep on the Structural Performance of Reinforced Concrete Walls under Fire
Author
Chen, Jun
First page
406
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20755309
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930854940
Copyright
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.