Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Object detection is a key task in automatic driving, and the poor performance of small object detection is a challenge that needs to be overcome. Previously, object detection networks could detect large-scale objects in ideal environments, but detecting small objects was very difficult. To address this problem, we propose a multi-layer fusion 3D object detection network. First, a dense fusion (D-fusion) method is proposed, which is different from the traditional fusion method. By fusing the feature maps of each layer, more semantic information of the fusion network can be preserved. Secondly, in order to preserve small objects at the feature map level, we designed a feature extractor with an adaptive fusion module (AFM), which reduces the impact of the background on small objects by weighting and fusing different feature layers. Finally, an attention mechanism was added to the feature extractor to accelerate the training efficiency and convergence speed of the network by suppressing information that is irrelevant to the task. The experimental results show that our proposed approach greatly improves the baseline and outperforms most state-of-the-art methods on KITTI object detection benchmarks.

Details

Title
Multi-Layer Fusion 3D Object Detection via Lidar Point Cloud and Camera Image
Author
Guo, Yuhao; Hu, Hui  VIAFID ORCID Logo 
First page
1348
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930934980
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.