Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study introduces session-aware recommendation models, leveraging GRU (Gated Recurrent Unit) and attention mechanisms for advanced latent interaction data integration. A primary advancement is enhancing latent context, a critical factor for boosting recommendation accuracy. We address the existing models’ rigidity by dynamically blending short-term (most recent) and long-term (historical) preferences, moving beyond static period definitions. Our approaches, pre-combination (LCII-Pre) and post-combination (LCII-Post), with fixed (Fix) and flexible learning (LP) weight configurations, are thoroughly evaluated. We conducted extensive experiments to assess our models’ performance on public datasets such as Amazon and MovieLens 1M. Notably, on the MovieLens 1M dataset, LCII-PreFix achieved a 1.85% and 2.54% higher Recall@20 than II-RNN and BERT4Rec+st+TSA, respectively. On the Steam dataset, LCII-PostLP outperformed these models by 18.66% and 5.5%. Furthermore, on the Amazon dataset, LCII showed a 2.59% and 1.89% improvement in Recall@20 over II-RNN and CAII. These results affirm the significant enhancement our models bring to session-aware recommendation systems, showcasing their potential for both academic and practical applications in the field.

Details

Title
Optimizing Session-Aware Recommenders: A Deep Dive into GRU-Based Latent Interaction Integration
Author
Ming-Yen, Lin 1   VIAFID ORCID Logo  ; Ping-Chun, Wu 1 ; Sue-Chen Hsueh 2 

 Department of Information Engineering and Computer Science, Feng Chia University, Taichung 402, Taiwan; [email protected] (M.-Y.L.); [email protected] (P.-C.W.) 
 Department of Information Management, Chaoyang University of Technology, Taichung 413, Taiwan 
First page
51
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19995903
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2930937008
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.