Abstract

Traditional histochemical staining of post-mortem samples often confronts inferior staining quality due to autolysis caused by delayed fixation of cadaver tissue, and such chemical staining procedures covering large tissue areas demand substantial labor, cost and time. Here, we demonstrate virtual staining of autopsy tissue using a trained neural network to rapidly transform autofluorescence images of label-free autopsy tissue sections into brightfield equivalent images, matching hematoxylin and eosin (H&E) stained versions of the same samples. The trained model can effectively accentuate nuclear, cytoplasmic and extracellular features in new autopsy tissue samples that experienced severe autolysis, such as COVID-19 samples never seen before, where the traditional histochemical staining fails to provide consistent staining quality. This virtual autopsy staining technique provides a rapid and resource-efficient solution to generate artifact-free H&E stains despite severe autolysis and cell death, also reducing labor, cost and infrastructure requirements associated with the standard histochemical staining.

Conventional staining of post-mortem samples can be affected by several factors, including tissue autolysis. Here, the authors demonstrate a virtual staining tool using a trained neural network to turn autofluorescence images of label-free autopsy tissue into brightfield equivalent images.

Details

Title
Virtual histological staining of unlabeled autopsy tissue
Author
Li, Yuzhu 1 ; Pillar, Nir 1 ; Li, Jingxi 1   VIAFID ORCID Logo  ; Liu, Tairan 1 ; Wu, Di 2 ; Sun, Songyu 2 ; Ma, Guangdong 3 ; de Haan, Kevin 1   VIAFID ORCID Logo  ; Huang, Luzhe 1 ; Zhang, Yijie 1 ; Hamidi, Sepehr 4 ; Urisman, Anatoly 5   VIAFID ORCID Logo  ; Keidar Haran, Tal 6   VIAFID ORCID Logo  ; Wallace, William Dean 7   VIAFID ORCID Logo  ; Zuckerman, Jonathan E. 4 ; Ozcan, Aydogan 8   VIAFID ORCID Logo 

 University of California, Electrical and Computer Engineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Bioengineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, California NanoSystems Institute (CNSI), Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California, Computer Science Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California, Electrical and Computer Engineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); Xi’an Jiaotong University, School of Physics, Xi’an, China (GRID:grid.43169.39) (ISNI:0000 0001 0599 1243) 
 University of California, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
 University of California, Department of Pathology, San Francisco, USA (GRID:grid.266102.1) (ISNI:0000 0001 2297 6811) 
 Hadassah Hebrew University Medical Center, Department of Pathology, Jerusalem, Israel (GRID:grid.17788.31) (ISNI:0000 0001 2221 2926) 
 University of Southern California, Department of Pathology, Keck School of Medicine, Los Angeles, USA (GRID:grid.42505.36) (ISNI:0000 0001 2156 6853) 
 University of California, Electrical and Computer Engineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Bioengineering Department, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, California NanoSystems Institute (CNSI), Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718); University of California, Department of Surgery, Los Angeles, USA (GRID:grid.19006.3e) (ISNI:0000 0000 9632 6718) 
Pages
1684
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2931027518
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.