Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study, we employ in situ, meteorological, and remote sensing data to estimate chlorophyll-a concentration at different depths in a South American freshwater ecosystem, focusing specifically on a lake in southern Chile known as Lake Maihue. For our analysis, we explored four different scenarios using three deep learning and traditional statistical models. These scenarios involved using field data (Scenario 1), meteorological variables (Scenario 2), and satellite data (Scenarios 3.1 and 3.2) to predict chlorophyll-a levels in Lake Maihue at three different depths (0, 15, and 30 m). Our choice of models included SARIMAX, DGLM, and LSTM, all of which showed promising statistical performance in predicting chlorophyll-a concentrations in this lake. Validation metrics for these models indicated their effectiveness in predicting chlorophyll levels, which serve as valuable indicators of the presence of algae in the water body. The coefficient of determination values ranged from 0.30 to 0.98, with the DGLM model showing the most favorable statistics in all scenarios tested. It is worth noting that the LSTM model yielded comparatively lower metrics, mainly due to the limitations of the available training data. The models employed, which use traditional statistical and machine learning models and meteorological and remote sensing data, have great potential for application in lakes in Chile and the rest of the world with similar characteristics. In addition, these results constitute a fundamental resource for decision-makers involved in the protection and conservation of water resource quality.

Details

Title
Chlorophyll-a Detection Algorithms at Different Depths Using In Situ, Meteorological, and Remote Sensing Data in a Chilean Lake
Author
Rodríguez-López, Lien 1   VIAFID ORCID Logo  ; Alvarez, Denisse 2   VIAFID ORCID Logo  ; David Bustos Usta 3 ; Duran-Llacer, Iongel 4   VIAFID ORCID Logo  ; Lisandra Bravo Alvarez 5   VIAFID ORCID Logo  ; Fagel, Nathalie 6 ; Bourrel, Luc 7 ; Frappart, Frederic 8   VIAFID ORCID Logo  ; Urrutia, Roberto 9 

 Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Lientur 1457, Concepcion 4030000, Chile 
 Centro Bahía Lomas, Facultad de Ciencias, Universidad Santo Tomás, Concepcion 4030000, Chile; [email protected] 
 Facultad de Oceanografía, Universidad de Concepción, Concepcion 4030000, Chile; [email protected] 
 Hémera Centro de Observación de la Tierra, Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Camino La Pirámide 5750, Santiago 8580745, Chile; [email protected] 
 Department of Electrical Engineering, Universidad de Concepción, Edmundo Larenas 219, Concepcion 4030000, Chile; [email protected] 
 UR Argile, Geochimie et Environment Sedimentary (AGEs), Geology Department, University of Liege, 4000 Liège, Belgium; [email protected] 
 Géosciences Environnement Toulouse, UMR 5563, Université de Toulouse, CNRS-IRD-OMP-CNES, 31000 Toulouse, France; [email protected] 
 INRAE, Bordeaux Sciences Agro, UMR 1391 ISPA, 33140 Villenave-d’Ornon, France; [email protected] 
 Facultad de Ciencias Ambientales, Universidad de Concepción, Concepcion 4030000, Chile; [email protected] 
First page
647
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2931051545
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.