Full Text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Canine pemphigus foliaceus (PF) is considered the most common autoimmune skin disease in dogs. The mechanisms of canine PF disease are currently poorly understood; therefore, this study aimed to better understand the immune signature of canine PF. We analyzed the expression of 800 different genes from formalin-fixed, paraffin-embedded samples. Our transcriptome analyses found 420 significantly differentially expressed genes (DEGs, 338 upregulated and 82 downregulated). These genes belonged to several signaling pathways, such as the mitogen-activated protein kinase (MAPK), the Janus kinase signal transducer and activator of transcription (JAK-STAT), and T-helper 17 (Th17) pathways, which are also found to be enhanced in human pemphigus studies and could provide a novel target for future drug therapy.

Abstract

Canine pemphigus foliaceus (PF) is considered the most common autoimmune skin disease in dogs; the mechanism of PF disease development is currently poorly understood. Therefore, this study aimed to characterize the molecular mechanisms and altered biological pathways in the skin lesions of canine PF patients. Using an RNA microarray on formalin-fixed, paraffin-embedded samples, we analyzed the transcriptome of canine PF lesional skin (n = 7) compared to healthy skin (n = 5). Of the 800 genes analyzed, 420 differentially expressed genes (DEGs) (p < 0.05) were found. Of those, 338 genes were significantly upregulated, including pro-inflammatory and Th17-related genes. Cell type profiling found enhancement of several cell types, such as neutrophils, T-cells, and macrophages, in PF skin compared to healthy skin. Enrichment analyses of the upregulated DEGs resulted in 78 statistically significant process networks (FDR < 0.05), including the Janus kinase signal transducer and activator of transcription (JAK-STAT) and mitogen-activated protein kinase (MAPK) signaling. In conclusion, canine PF lesional immune signature resembles previously published changes in human pemphigus skin lesions. Further studies with canine PF lesional skin using next-generation sequencing (e.g., RNA sequencing, spatial transcriptomics, etc.) and the development of canine keratinocyte/skin explant PF models are needed to elucidate the pathogenesis of this debilitating disease.

Details

Title
Microarray Gene Expression Analysis of Lesional Skin in Canine Pemphigus Foliaceus
Author
Starr, Haley 1 ; Howerth, Elizabeth W 2 ; Leon, Renato 1   VIAFID ORCID Logo  ; GogalJr, Robert M 3   VIAFID ORCID Logo  ; Banovic, Frane 1   VIAFID ORCID Logo 

 Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; [email protected] (H.S.); [email protected] (R.L.) 
 Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; [email protected] 
 Department of Biomedical Sciences, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; [email protected] 
First page
89
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
23067381
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2931066570
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.