Full Text

Turn on search term navigation

© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the increasing number of urban vehicles, as well as the current situation of non-intelligent traffic control systems, spatiotemporal non-uniform traffic resource occupation, and limited traffic planning and design, existing urban traffic planning methods cannot effectively solve problems such as frequent traffic congestion and uncontrollable commuting time for residents. In order to solve the above problems, this paper first constructs a multi-queue, multi-server queuing model based on the server vacation and a multi-hop cascaded queuing model from the perspective of local intersections and global commuting paths. We analyze the theoretical changes in passage delay costs at local intersections and on global commuting paths as a function of traffic flow and the random duration of traffic signals. On this basis, this article proposes a collaborative intelligent traffic planning algorithm based on artificial intelligence, which utilizes traffic sensors to dynamically perceive traffic congestion status and collaboratively plans the optimal duration of traffic signals and the optimal driving path of vehicles from both local and global perspectives, thereby maximizing the on-time arrival ratio of vehicles while ensuring the required commuting delay. The simulation results show that the proposed method can increase the on-time arrival ratio of vehicles by at least 20% compared to contrast methods while meeting the requirements relating to commuting delays. This verifies that our method can provide support for the improvement in efficiency in future Internet of vehicles.

Details

Title
Collaborative Intelligent Traffic Planning in the Internet of Vehicles
Author
Zhu, Yan
First page
1303
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2931104280
Copyright
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.