It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Advanced slot and winding designs are imperative to create future high performance electrical machines (EM). As a result, the development of methods to design and improve slot filling factor (SFF) has attracted considerable research. Recent developments in manufacturing processes, such as additive manufacturing and alternative materials, has also highlighted a need for novel high-fidelity design techniques to develop high performance complex geometries and topologies. This study therefore introduces a novel physics-informed machine learning (PIML) design optimization process for improving SFF in traction electrical machines used in electric vehicles. A maximum entropy sampling algorithm (MESA) is used to seed a physics-informed Bayesian optimization (PIBO) algorithm, where the target function and its approximations are produced by Gaussian processes (GP)s. The proposed PIBO-MESA is coupled with a 2D finite element model (FEM) to perform a GP-based surrogate and provide the first demonstration of the optimal combination of complex design variables for an electrical machine. Significant computational gains were achieved using the new PIBO-MESA approach, which is 45% faster than existing stochastic methods, such as the non-dominated sorting genetic algorithm II (NSGA-II). The FEM results confirm that the new design optimization process and keystone shaped wires lead to a higher SFF (i.e. by 20%) and electromagnetic improvements (e.g. maximum torque by 12%) with similar resistivity. The newly developed PIBO-MESA design optimization process therefore presents significant benefits in the design of high-performance electric machines, with reduced development time and costs.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University College London, Advanced Propulsion Laboratory (APL), Department of Mechanical Engineering, Faculty of Engineering Sciences, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201)
2 University of Bath, Department of Mechanical Engineering, Institute for Advanced Automotive Propulsion Systems (IAAPS), Faculty of Engineering and Design, Bath, UK (GRID:grid.7340.0) (ISNI:0000 0001 2162 1699)