It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study, centered on the Asan Wetland in Uttarakhand, examines the ecological impact of heavy metals on aquatic insects biodiversity. It highlights the detrimental effects of metals like chromium, mercury, and lead, stemming from natural and anthropogenic sources, on aquatic insects diversity. Aquatic insects, particularly sensitive to water quality, are emphasized as key indicators of environmental health, illustrating the importance of understanding and managing the influences on wetland ecosystems. Wetland ecosystems are vulnerable to various environmental stressors, including pollution from heavy metals. These toxic substances can alter water quality parameters, disrupt nutrient cycling, and negatively impact the biodiversity and ecological balance of the system. This study aimed to evaluate the impact of several heavy metals (namely Cd, As, Cu, Fe, Pb, Ni, Zn, Al, Cr) on the distribution and biodiversity of various aquatic insect species, including Coeleoptera, Diptera, Ephemeroptera, Odonata, Plecoptera, and Trichoptera. The research utilized data collected between November 2021 and October 2022 from specifically chosen sites (S1, S2, S3) within the Asan Wetland in Dehradun, Uttarakhand. After collecting and identifying samples, various statistical (Sorenson, Shannon-Weiner diversity index, Margelef index) and multivariate tests (CCA, PCA, One-way Anova), have been applied to show the effects of these parameters. This study offers significant findings regarding the distribution patterns of heavy metals, the abundance of aquatic insects, and their interconnectedness within the ecosystem of the Asan Wetland. The abundance of aquatic insects, represented by 13 genera belonging to 6 orders, was assessed at three different sites (S1, S2, and S3) within the wetland. It was concluded that the heavy metals concentration and aquatic insects’ density increases and decreases vice-versa in monsoon and winter seasons might be due to unfavourable factors. These findings contribute to the understanding of ecological dynamics and potential impacts of heavy metals on aquatic biota in wetland environments.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 HNB Garhwal University (A Central University), BGR Campus Pauri Garhwal, Ecology Lab, Department of Zoology, Pauri, India (GRID:grid.412161.1) (ISNI:0000 0001 0681 6439)
2 Indian Institute of Technology, Department of Civil Engineering, Roorkee, Haridwar, India (GRID:grid.19003.3b) (ISNI:0000 0000 9429 752X)
3 Jazan University, Department of Civil Engineering, College of Engineering, Jazan, Saudi Arabia (GRID:grid.411831.e) (ISNI:0000 0004 0398 1027)
4 Mewat Engineering College, Department of Civil Engineering, Nuh, Haryana, India (GRID:grid.411831.e)