Abstract

The parameters of the quantum circuit in a variational quantum algorithm induce a landscape that contains the relevant information regarding its optimization hardness. In this work, we investigate such landscapes through the lens of information content, a measure of the variability between points in parameter space. Our major contribution connects the information content to the average norm of the gradient, for which we provide robust analytical bounds on its estimators. This result holds for any (classical or quantum) variational landscape. We validate the analytical understating by numerically studying the scaling of the gradient in an instance of the barren plateau problem. In such instance, we are able to estimate the scaling pre-factors in the gradient. Our work provides a way to analyze variational quantum algorithms in a data-driven fashion well-suited for near-term quantum computers.

Details

Title
Analyzing variational quantum landscapes with information content
Author
Pérez-Salinas, Adrián 1 ; Wang, Hao 2   VIAFID ORCID Logo  ; Bonet-Monroig, Xavier 1   VIAFID ORCID Logo 

 Universiteit Leiden, 〈aQaL〉 Applied Quantum Algorithms, Leiden, Netherlands (GRID:grid.5132.5) (ISNI:0000 0001 2312 1970); Universiteit Leiden, Instituut-Lorentz, Leiden, Netherlands (GRID:grid.5132.5) (ISNI:0000 0001 2312 1970) 
 Universiteit Leiden, 〈aQaL〉 Applied Quantum Algorithms, Leiden, Netherlands (GRID:grid.5132.5) (ISNI:0000 0001 2312 1970); Universiteit Leiden, LIACS, Leiden, Netherlands (GRID:grid.5132.5) (ISNI:0000 0001 2312 1970) 
Pages
27
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20566387
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2933270281
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.