It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The formation of charge density waves is a long-standing open problem, particularly in dimensions higher than one. Various observations in the vanadium antimonides discovered recently further underpin this notion. Here, we study the Kagome metal CsV3Sb5 using polarized inelastic light scattering and density functional theory calculations. We observe a significant gap anisotropy with 
The origin of the charge density wave in vanadium antimonides has been widely debated. Here, the authors report the cooperation of electron-phonon and phonon-phonon coupling for the formation of the charge density wave in CsV3Sb5.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
 ; Peis, Leander 2 ; Cuddy, Emma Frances 3
 
; Peis, Leander 2 ; Cuddy, Emma Frances 3  
 ; Zhao, Zhen 4 ; Li, Dong 4
 
; Zhao, Zhen 4 ; Li, Dong 4  
 ; Zhang, Yuhang 4
 
; Zhang, Yuhang 4  
 ; Stumberger, Romona 5 ; Moritz, Brian 6 ; Yang, Haitao 7
 
; Stumberger, Romona 5 ; Moritz, Brian 6 ; Yang, Haitao 7  
 ; Gao, Hongjun 7
 
; Gao, Hongjun 7  
 ; Devereaux, Thomas Peter 8
 
; Devereaux, Thomas Peter 8  
 ; Hackl, Rudi 9
 
; Hackl, Rudi 9  
 
 
1 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); University College Cork, Department of Physics, Cork, Ireland (GRID:grid.7872.a) (ISNI:0000 0001 2331 8773)
2 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); Technische Universität München, School of Natural Sciences, Garching, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966); IFW Dresden, Dresden, Germany (GRID:grid.14841.38) (ISNI:0000 0000 9972 3583); Capgemini, München, Germany (GRID:grid.14841.38)
3 Stanford University, Department of Materials Science and Engineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000 0004 1936 8956); SLAC National Accelerator Laboratory and Stanford University, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771)
4 Chinese Academy of Sciences, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, China (GRID:grid.9227.e) (ISNI:0000 0001 1957 3309)
5 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); Technische Universität München, School of Natural Sciences, Garching, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966); Robert Bosch GmbH, Renningen, Germany (GRID:grid.6584.f) (ISNI:0000 0004 0553 2276)
6 SLAC National Accelerator Laboratory and Stanford University, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771)
7 Chinese Academy of Sciences, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Beijing, China (GRID:grid.9227.e) (ISNI:0000 0001 1957 3309); University of Chinese Academy of Sciences, School of Physical Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
8 Stanford University, Department of Materials Science and Engineering, Stanford, USA (GRID:grid.168010.e) (ISNI:0000 0004 1936 8956); SLAC National Accelerator Laboratory and Stanford University, Stanford Institute for Materials and Energy Sciences, Menlo Park, USA (GRID:grid.445003.6) (ISNI:0000 0001 0725 7771); Stanford University, Geballe Laboratory for Advanced Materials, Stanford, USA (GRID:grid.168010.e) (ISNI:0000 0004 1936 8956)
9 Bayerische Akademie der Wissenschaften, Walther Meissner Institut, Garching, Germany (GRID:grid.423977.c) (ISNI:0000 0001 0940 3517); Technische Universität München, School of Natural Sciences, Garching, Germany (GRID:grid.6936.a) (ISNI:0000 0001 2322 2966); IFW Dresden, Dresden, Germany (GRID:grid.14841.38) (ISNI:0000 0000 9972 3583)




