Abstract

As CMOS technologies face challenges in dimensional and voltage scaling, the demand for novel logic devices has never been greater, with spin-based devices offering scaling potential, at the cost of significantly high switching energies. Alternatively, magnetoelectric materials are predicted to enable low-power magnetization control, a solution with limited device-level results. Here, we demonstrate voltage-based magnetization switching and reading in nanodevices at room temperature, enabled by exchange coupling between multiferroic BiFeO3 and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading. We show that, upon the electrical switching of the BiFeO3, the magnetization of the CoFe can be reversed, giving rise to different voltage outputs. Through additional microscopy techniques, magnetization reversal is linked with the polarization state and antiferromagnetic cycloid propagation direction in the BiFeO3. This study constitutes the building block for magnetoelectric spin-orbit logic, opening a new avenue for low-power beyond-CMOS technologies.

The authors realize voltage-based magnetization switching and reading in nanodevices at room temperature, through exchange coupling between multiferroic BiFeO3 and ferromagnetic CoFe, for writing, and spin-to-charge current conversion between CoFe and Pt, for reading.

Details

Title
Voltage-based magnetization switching and reading in magnetoelectric spin-orbit nanodevices
Author
Vaz, Diogo C. 1   VIAFID ORCID Logo  ; Lin, Chia-Ching 2 ; Plombon, John J. 2 ; Choi, Won Young 3   VIAFID ORCID Logo  ; Groen, Inge 1 ; Arango, Isabel C. 1   VIAFID ORCID Logo  ; Chuvilin, Andrey 4   VIAFID ORCID Logo  ; Hueso, Luis E. 4   VIAFID ORCID Logo  ; Nikonov, Dmitri E. 2   VIAFID ORCID Logo  ; Li, Hai 2   VIAFID ORCID Logo  ; Debashis, Punyashloka 2 ; Clendenning, Scott B. 2 ; Gosavi, Tanay A. 2 ; Huang, Yen-Lin 5 ; Prasad, Bhagwati 6 ; Ramesh, Ramamoorthy 7   VIAFID ORCID Logo  ; Vecchiola, Aymeric 8   VIAFID ORCID Logo  ; Bibes, Manuel 8   VIAFID ORCID Logo  ; Bouzehouane, Karim 8   VIAFID ORCID Logo  ; Fusil, Stephane 8 ; Garcia, Vincent 8   VIAFID ORCID Logo  ; Young, Ian A. 2   VIAFID ORCID Logo  ; Casanova, Fèlix 4   VIAFID ORCID Logo 

 CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain (GRID:grid.424265.3) (ISNI:0000 0004 1761 1166) 
 Components Research, Intel Corp., Hillsboro, USA (GRID:grid.419318.6) (ISNI:0000 0004 1217 7655) 
 CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain (GRID:grid.424265.3) (ISNI:0000 0004 1761 1166); VanaM Inc., 21-1 Doshin-ro 4-gil, Yeongdeungpo-gu, Seoul, Republic of Korea (GRID:grid.424265.3) 
 CIC nanoGUNE BRTA, Donostia-San Sebastian, Spain (GRID:grid.424265.3) (ISNI:0000 0004 1761 1166); Basque Foundation for Science, IKERBASQUE, Bilbao, Spain (GRID:grid.424810.b) (ISNI:0000 0004 0467 2314) 
 University of California, Department of Physics, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878) 
 Materials Engineering Department, Indian Institute of Science, Bengaluru, India (GRID:grid.34980.36) (ISNI:0000 0001 0482 5067) 
 University of California, Department of Physics, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878); Rice University, Department of Physics and Astronomy, Houston, USA (GRID:grid.21940.3e) (ISNI:0000 0004 1936 8278) 
 Université Paris-Saclay, Laboratoire Albert Fert, CNRS, Thales, Palaiseau, France (GRID:grid.460789.4) (ISNI:0000 0004 4910 6535) 
Pages
1902
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2933664491
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.