It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Using deep learning technology to segment oral CBCT images for clinical diagnosis and treatment is one of the important research directions in the field of clinical dentistry. However, the blurred contour and the scale difference limit the segmentation accuracy of the crown edge and the root part of the current methods, making these regions become difficult-to-segment samples in the oral CBCT segmentation task. Aiming at the above problems, this work proposed a Difficult-to-Segment Focus Network (DSFNet) for segmenting oral CBCT images. The network utilizes a Feature Capturing Module (FCM) to efficiently capture local and long-range features, enhancing the feature extraction performance. Additionally, a Multi-Scale Feature Fusion Module (MFFM) is employed to merge multiscale feature information. To further improve the loss ratio for difficult-to-segment samples, a hybrid loss function is proposed, combining Focal Loss and Dice Loss. By utilizing the hybrid loss function, DSFNet achieves 91.85% Dice Similarity Coefficient (DSC) and 0.216 mm Average Symmetric Surface Distance (ASSD) performance in oral CBCT segmentation tasks. Experimental results show that the proposed method is superior to current dental CBCT image segmentation techniques and has real-world applicability.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Zhejiang Shuren University, College of Information Science and Technology, Hangzhou, China (GRID:grid.413073.2) (ISNI:0000 0004 1758 9341); Zhejiang Shuren University, Zhejiang-Netherlands Joint Laboratory for Digital Diagnosis and Treatment of Oral Diseases, Hangzhou, China (GRID:grid.413073.2) (ISNI:0000 0004 1758 9341)
2 Zhejiang Shuren University, Zhejiang-Netherlands Joint Laboratory for Digital Diagnosis and Treatment of Oral Diseases, Hangzhou, China (GRID:grid.413073.2) (ISNI:0000 0004 1758 9341)