It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Based on the splitting form of the Green’s function, a hybrid fast algorithm is proposed for efficient analysis of multiscale problems. In this algorithm, the Green’s function is a priori split into two parts: a spectrally band-limited part and a spatially localized part. Then, the fast Fourier transforms (FFT) utilizing the global Cartesian grid and the matrix compression method aided by an adaptive octree grouping are implemented for these two parts, respectively. Compared with the traditional methods which only employ the FFT for acceleration, the proposed hybrid fast algorithm is capable of maintaining low memory consumption in multiscale problems without compromising time cost. Moreover, the proposed algorithm does not need cumbersome geometric treatment to implement the hybridization, and can be established in a concise and straightforward manner. Several numerical examples discretized with multiscale meshes are provided to demonstrate the computational performance of proposed hybrid fast algorithm.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer