Full Text

Turn on search term navigation

Copyright © 2024 Dilawar Shah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Breast cancer imaging is paramount to quickly detecting and accurately evaluating the disease. The scarcity of annotated mammogram data presents a significant obstacle when building deep learning models that can produce reliable outcomes. This paper proposes a novel approach that utilizes deep convolutional generative adversarial networks (DCGANs) to effectively tackle the issue of limited data availability. The main goal is to produce synthetic mammograms that accurately reproduce the intrinsic patterns observed in real data, enhancing the current dataset. The proposed synthesis method is supported by thorough experimentation, demonstrating its ability to reproduce diverse viewpoints of the breast accurately. A mean similarity assessment with a standard deviation was performed to evaluate the credibility of the synthesized images and establish the clinical significance of the data obtained. A thorough evaluation of the uniformity within each class was conducted, and any deviations from each class’s mean values were measured. Including outlier removal using a specified threshold is a crucial process element. This procedure improves the accuracy level of each image cluster and strengthens the synthetic dataset’s general dependability. The visualization of the class clustering results highlights the alignment between the produced images and the inherent distribution of the data. After removing outliers, distinct and consistent clusters of homogeneous data points were observed. The proposed similarity assessment demonstrates noteworthy effectiveness, eliminating redundant and dissimilar images from all classes. Specifically, there are 505 instances in the normal class, 495 instances in the benign class, and 490 instances in the malignant class out of 600 synthetic mammograms for each class. To check the further validity of the proposed model, human experts visually inspected and validated synthetic images. This highlights the effectiveness of our methodology in identifying substantial outliers.

Details

Title
Reliable Breast Cancer Diagnosis with Deep Learning: DCGAN-Driven Mammogram Synthesis and Validity Assessment
Author
Shah, Dilawar 1   VIAFID ORCID Logo  ; Mohammad Asmat Ullah Khan 1 ; Abrar, Mohammad 2 

 Department of Computer Science, Faculty of Computing and Information Technology, International Islamic University, Islamabad 44000, Pakistan 
 Department of Computer Science, Bacha Khan University, Charsadda 24420, Pakistan 
Editor
Soumya Ranjan Nayak
Publication year
2024
Publication date
2024
Publisher
John Wiley & Sons, Inc.
ISSN
16879724
e-ISSN
16879732
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2933994780
Copyright
Copyright © 2024 Dilawar Shah et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/