Abstract

Artificial Intelligence (AI) is currently experiencing a bloom driven by deep learning (DL) techniques, which rely on networks of connected simple computing units operating in parallel. The low communication bandwidth between memory and processing units in conventional von Neumann machines does not support the requirements of emerging applications that rely extensively on large sets of data. More recent computing paradigms, such as high parallelization and near-memory computing, help alleviate the data communication bottleneck to some extent, but paradigm- shifting concepts are required. Memristors, a novel beyond-complementary metal-oxide-semiconductor (CMOS) technology, are a promising choice for memory devices due to their unique intrinsic device-level properties, enabling both storing and computing with a small, massively-parallel footprint at low power. Theoretically, this directly translates to a major boost in energy efficiency and computational throughput, but various practical challenges remain. In this work we review the latest efforts for achieving hardware-based memristive artificial neural networks (ANNs), describing with detail the working principia of each block and the different design alternatives with their own advantages and disadvantages, as well as the tools required for accurate estimation of performance metrics. Ultimately, we aim to provide a comprehensive protocol of the materials and methods involved in memristive neural networks to those aiming to start working in this field and the experts looking for a holistic approach.

Memristors hold promise for massively-parallel computing at low power. Aguirre et al. provide a comprehensive protocol of the materials and methods for designing memristive artificial neural networks with the detailed working principles of each building block and the tools for performance evaluation.

Details

Title
Hardware implementation of memristor-based artificial neural networks
Author
Aguirre, Fernando 1 ; Sebastian, Abu 2   VIAFID ORCID Logo  ; Le Gallo, Manuel 2   VIAFID ORCID Logo  ; Song, Wenhao 3 ; Wang, Tong 3 ; Yang, J. Joshua 3   VIAFID ORCID Logo  ; Lu, Wei 4 ; Chang, Meng-Fan 5   VIAFID ORCID Logo  ; Ielmini, Daniele 6   VIAFID ORCID Logo  ; Yang, Yuchao 7   VIAFID ORCID Logo  ; Mehonic, Adnan 8   VIAFID ORCID Logo  ; Kenyon, Anthony 8   VIAFID ORCID Logo  ; Villena, Marco A. 9   VIAFID ORCID Logo  ; Roldán, Juan B. 10   VIAFID ORCID Logo  ; Wu, Yuting 4 ; Hsu, Hung-Hsi 5 ; Raghavan, Nagarajan 11 ; Suñé, Jordi 12   VIAFID ORCID Logo  ; Miranda, Enrique 12 ; Eltawil, Ahmed 13   VIAFID ORCID Logo  ; Setti, Gianluca 13 ; Smagulova, Kamilya 13 ; Salama, Khaled N. 13   VIAFID ORCID Logo  ; Krestinskaya, Olga 13   VIAFID ORCID Logo  ; Yan, Xiaobing 14   VIAFID ORCID Logo  ; Ang, Kah-Wee 15 ; Jain, Samarth 15 ; Li, Sifan 15 ; Alharbi, Osamah 9   VIAFID ORCID Logo  ; Pazos, Sebastian 9   VIAFID ORCID Logo  ; Lanza, Mario 9   VIAFID ORCID Logo 

 King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, Saudi Arabia (GRID:grid.45672.32) (ISNI:0000 0001 1926 5090); Universitat Autònoma de Barcelona (UAB), Departament d’Enginyeria Electrònica, Barcelona, Spain (GRID:grid.7080.f) (ISNI:0000 0001 2296 0625) 
 IBM Research – Zurich, Rüschlikon, Switzerland (GRID:grid.410387.9) 
 University of Southern California (USC), Department of Electrical and Computer Engineering, Los Angeles, USA (GRID:grid.42505.36) (ISNI:0000 0001 2156 6853) 
 University of Michigan, Department of Electrical Engineering and Computer Science, Ann Arbor, USA (GRID:grid.214458.e) (ISNI:0000 0004 1936 7347) 
 National Tsing Hua University, Department of Electrical Engineering, Hsinchu, Taiwan (GRID:grid.38348.34) (ISNI:0000 0004 0532 0580) 
 Politecnico di Milano and IUNET, Dipartimento di Elettronica, Informazione e Bioingegneria, Milano, Italy (GRID:grid.4643.5) (ISNI:0000 0004 1937 0327) 
 Peking University, School of Electronic and Computer Engineering, Shenzhen, China (GRID:grid.11135.37) (ISNI:0000 0001 2256 9319) 
 University College London (UCL), Torrington Place, Department of Electronic and Electrical Engineering, London, UK (GRID:grid.83440.3b) (ISNI:0000 0001 2190 1201) 
 King Abdullah University of Science and Technology (KAUST), Physical Science and Engineering Division, Thuwal, Saudi Arabia (GRID:grid.45672.32) (ISNI:0000 0001 1926 5090) 
10  Facultad de Ciencias, Universidad de Granada, Avenida Fuentenueva s/n, Departamento de Electrónica y Tecnología de Computadores, Granada, Spain (GRID:grid.4489.1) (ISNI:0000 0001 2167 8994) 
11  Singapore University of Technology & Design, Engineering Product Development (EPD) Pillar, Singapore, Singapore (GRID:grid.263662.5) (ISNI:0000 0004 0500 7631) 
12  Universitat Autònoma de Barcelona (UAB), Departament d’Enginyeria Electrònica, Barcelona, Spain (GRID:grid.7080.f) (ISNI:0000 0001 2296 0625) 
13  King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division, Thuwal, Saudi Arabia (GRID:grid.45672.32) (ISNI:0000 0001 1926 5090) 
14  Hebei University, Key Laboratory of Brain-Like Neuromorphic Devices and Systems of Hebei Province, Baoding, China (GRID:grid.256885.4) (ISNI:0000 0004 1791 4722) 
15  National University of Singapore (NUS), Department of Electrical and Computer Engineering, College of Design and Engineering, Singapore, Singapore (GRID:grid.428397.3) (ISNI:0000 0004 0385 0924) 
Pages
1974
Publication year
2024
Publication date
2024
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2937176603
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.