It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background: Repetitive genome regions, such as variable number of tandem repeats (VNTR) or short tandem repeats (STR), are major constituents of the uncharted dark genome and evade conventional sequencing approaches. The protein-coding LPA kringle IV type 2 (KIV 2) VNTR (5.6 kb per unit, 1-40 units per allele) is a medically highly relevant example with a particularly intricate structure, multiple haplotypes, intragenic homologies and an intra-VNTR STR. It is the primary regulator of plasma lipoprotein(a) [Lp(a)] concentrations, an important cardiovascular risk factor. However, despite Lp(a) variance is mostly genetically determined, Lp(a) concentrations vary widely between individuals and ancestries. This VNTR region hides multiple causal variants and functional haplotypes. Methods: We evaluated the performance of amplicon-based nanopore sequencing with unique molecular identifiers (UMI-ONT-Seq) for SNP detection, haplotype mapping, VNTR unit consensus sequence generation and copy number estimation via coverage-corrected haplotypes quantification in the KIV-2 VNTR. We used 15 human samples and low-level mixtures (0.5% to 5%) of KIV-2 plasmids as a validation set. We then applied UMI-ONT-Seq to extract KIV 2 VNTR haplotypes in 48 multi-ancestry 1000 Genome samples and analyzed at scale a poorly characterized STR within the KIV-2 VNTR. Results: UMI-ONT-Seq detected KIV-2 SNPs down to 1% variant level with high sensitivity, specificity and precision (0.977 ± 0.018; 1.000 ± 0.0005; 0.993 ± 0.02) and accurately retrieved the full-length haplotype of each VNTR unit. Human variant levels were highly correlated with next-generation sequencing (R2=0.983) without bias across the whole variant level range. Six reads per UMI produced sequences of each KIV-2 unit with Q40-quality. The KIV-2 repeat number determined by coverage-corrected unique haplotype counting was in close agreement with droplet digital PCR (ddPCR), with 70% of the samples falling even within the narrow confidence interval of ddPCR. We then analyzed 62,679 intra-KIV 2 STR sequences and identified ancestry-specific STR patterns. Finally, we characterized the KIV-2 haplotype patterns across multiple ancestries. Conclusions: UMI-ONT-Seq accurately retrieves the SNP haplotype and precisely quantifies the VNTR copy number of each repeat unit of the complex KIV-2 VNTR region across multiple ancestries. This study utilizes the KIV-2 VNTR, presenting a novel and potent tool for comprehensive characterization of medically relevant complex genome regions at scale.
Competing Interest Statement
Stefan Coassin has received honoraria from Novartis AG (Basel, CH) and Silence Therapeutics PLC (London, UK) for consultancy on LPA genetics. Florian Kronenberg has received honoraria from Novartis AG, CRISPR Therapeutics, Silence Therapeutics, Roche and Amgen for consultancy on lipoprotein(a), as well as lecture fees. Lukas Forer has received honoraria from Novartis AG (Basel, CH) for consultancy related to lipoprotein(a).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





