Full Text

Turn on search term navigation

© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Major biological discoveries are made by interrogating living organisms with light. However, the limited penetration of un-scattered photons within biological tissues limits the depth range covered by optical methods. Deep-tissue imaging is achieved by combining light and ultrasound. Optoacoustic imaging exploits the optical generation of ultrasound to render high-resolution images at depths unattainable with optical microscopy. Recently, laser ultrasound has been suggested as a means of generating broadband acoustic waves for high-resolution pulse-echo ultrasound imaging. Herein, an approach is proposed to simultaneously interrogate biological tissues with light and ultrasound based on layer-by-layer coating of silica optical fibers with a controlled degree of transparency. The time separation between optoacoustic and ultrasound signals collected with a custom-made spherical array transducer is exploited for simultaneous 3D optoacoustic and laser ultrasound (OPLUS) imaging with a single laser pulse. OPLUS is shown to enable large-scale anatomical characterization of tissues along with functional multi-spectral imaging of chromophores and assessment of cardiac dynamics at ultrafast rates only limited by the pulse repetition frequency of the laser. The suggested approach provides a flexible and scalable means for developing a new generation of systems synergistically combining the powerful capabilities of optoacoustics and ultrasound imaging in biology and medicine.

Details

Title
Multi-Scale Volumetric Dynamic Optoacoustic and Laser Ultrasound (OPLUS) Imaging Enabled by Semi-Transparent Optical Guidance
Author
Nozdriukhin, Daniil 1   VIAFID ORCID Logo  ; Kalva, Sandeep Kumar 1 ; Özsoy, Cagla 1 ; Reiss, Michael 1 ; Li, Weiye 1 ; Razansky, Daniel 1 ; Xosé, Luís Deán-Ben 1 

 Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zürich, Zürich, Switzerland; Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zürich, Zürich, Switzerland 
Section
Research Articles
Publication year
2024
Publication date
Mar 2024
Publisher
John Wiley & Sons, Inc.
e-ISSN
21983844
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2937666482
Copyright
© 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.