It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Periodic sensory inputs entrain oscillatory brain activity, reflecting a neural mechanism that might be fundamental to temporal prediction and perception. Most environmental rhythms, such as music or speech, however, are rather quasi-periodic. Research has shown that neural tracking of speech is driven by modulations of the amplitude envelope, especially via sharp acoustic edges, which serve as prominent temporal landmarks. In the same vein, research on rhythm processing in music supports the notion that perceptual timing precision varies systematically with the sharpness of acoustic onset edges, conceptualized in the beat bin hypothesis. Increased envelope sharpness induces increased precision in localizing a sound in time. Despite this tight relationship between envelope shape and temporal processing, it is currently unknown how the brain uses predictive information about envelope features to optimize temporal perception. With the current study, we show that the predicted sharpness of the amplitude envelope is encoded by pre-target neural activity in the beta band (15-25 Hz), and has an impact on the temporal perception of sounds. Using probabilistic sound cues in an EEG experiment, we informed participants about the sharpness of the amplitude envelope of an upcoming target sound embedded in a quasi isochronous beat. The predictive information about the envelope shape modulated the performance in the timing judgment task and pre-target beta power. Interestingly, these conditional beta-power modulations correlated positively with behavioral performance in the timing-judgment task and with perceptual temporal precision in a click-alignment task. This study provides new insight into the neural processes underlying prediction of the sharpness of the amplitude envelope during beat perception, which modulate the temporal perception of sounds. This finding could reflect a process that is involved in temporal prediction, exerting top-down control on neural entrainment via the prediction of acoustic edges in the auditory stream.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
* As an additional control analysis, we investigated predictions solely based on inferred cue-to-target transition probabilities from previous trials. We updated all figures, changed slightly some of the analysis (e.g. correlation analysis, removed ITC analysis), changed some of the terminology, modified some text in the title, abstract, introduction, results, methods and discussion.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer