It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This study focused on monitoring the water volume variations of the Doroudzan dam reservoir in Shiraz, Iran, using satellite observations. In particular, Sentinel-3 altimetry mission (SRAL) Level-1B and Level-2 data were employed to calculate water level changes, addressing the limitations in accuracy for inland and shallow waters. Re-tracking of returned waveforms was applied to improve the accuracy of Level-2 altimetry results. Additionally, Sentinel-2 optical images were utilized to monitor the water surface area of the dam reservoir. The results demonstrated that re-tracking the returned waveforms significantly improved the water level observations compared to Level-2 data. The analysis extended to comparing the time series of water surface area estimated from Sentinel-2 images with in-situ data, revealing a high accuracy of 5.39%. Combining optimum water level and surface area data in Heron's equation facilitated the calculation of water volume variations. A remarkable correlation of 95.27% was found when comparing the time series of estimated water volume variations and in-situ data. This study underscores the effectiveness of Copernicus satellites, particularly Sentinel-3 and Sentinel-2 missions, in monitoring inland water bodies and demonstrates the reliability of the techniques employed for tracking dam reservoir volume variations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Computer Science, University of Iowa, Iowa 52242, USA; Department of Computer Science, University of Iowa, Iowa 52242, USA
2 Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, 1996715433, Iran; Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran, 1996715433, Iran
3 Master of Remote Sensing & GIS, University of Research Sciences, Tehran, Iran; Master of Remote Sensing & GIS, University of Research Sciences, Tehran, Iran
4 Technical Expert, Water and Wastewater company, Bandar-e Anzali, Gilan, Iran; Technical Expert, Water and Wastewater company, Bandar-e Anzali, Gilan, Iran