Abstract

State-of-the-art physics experiments require high-resolution, low-noise, and low-threshold detectors to achieve competitive scientific results. However, experimental environments invariably introduce sources of noise, such as electrical interference or microphonics. The sources of this environmental noise can often be monitored by adding specially designed “auxiliary devices” (e.g. microphones, accelerometers, seismometers, magnetometers, and antennae). A model can then be constructed to predict the detector noise based on the auxiliary device information, which can then be subtracted from the true detector signal. Here, we present a multivariate noise cancellation algorithm which can be used in a variety of settings to improve the performance of detectors using multiple auxiliary devices. To validate this approach, we apply it to simulated data to remove noise due to electromagnetic interference and microphonic vibrations. We then employ the algorithm to a cryogenic light detector in the laboratory and show an improvement in the detector performance. Finally, we motivate the use of nonlinear terms to better model vibrational contributions to the noise in thermal detectors. We show a further improvement in the performance of a particular channel of the CUORE detector when using the nonlinear algorithm in combination with optimal filtering techniques.

Details

Title
Improving the performance of cryogenic calorimeters with nonlinear multivariate noise cancellation algorithms
Author
Vetter, K. J. 1   VIAFID ORCID Logo  ; Beretta, M. 1   VIAFID ORCID Logo  ; Capelli, C. 2   VIAFID ORCID Logo  ; Corso, F. Del 3   VIAFID ORCID Logo  ; Hansen, E. V. 1   VIAFID ORCID Logo  ; Huang, R. G. 1   VIAFID ORCID Logo  ; Kolomensky, Yu. G. 1   VIAFID ORCID Logo  ; Marini, L. 4   VIAFID ORCID Logo  ; Nutini, I. 5   VIAFID ORCID Logo  ; Singh, V. 1   VIAFID ORCID Logo  ; Torres, A. 6   VIAFID ORCID Logo  ; Welliver, B. 1   VIAFID ORCID Logo  ; Zimmermann, S. 7   VIAFID ORCID Logo  ; Zucchelli, S. 3   VIAFID ORCID Logo 

 University of California Berkeley, Department of Physics, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878); Lawrence Berkeley National Lab, Nuclear Science Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551) 
 Lawrence Berkeley National Lab, Nuclear Science Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551) 
 Alma Mater Studiorum-Università di Bologna, Dipartimento di Fisica e Astronomia, Bologna, Italy (GRID:grid.6292.f) (ISNI:0000 0004 1757 1758); INFN–Sezione di Bologna, Bologna, Italy (GRID:grid.470193.8) (ISNI:0000 0004 8343 7610) 
 Gran Sasso Science Institute, L’Aquila, Italy (GRID:grid.466750.6) (ISNI:0000 0004 6005 2566); INFN–Laboratori Nazionali del Gran Sasso, Assergi, L’Aquila, Italy (GRID:grid.466877.c) (ISNI:0000 0001 2201 8832) 
 INFN–Sezione di Milano Bicocca, Milan, Italy (GRID:grid.470207.6) (ISNI:0000 0004 8390 4143); Università di Milano-Bicocca, Dipartimento di Fisica, Milan, Italy (GRID:grid.7563.7) (ISNI:0000 0001 2174 1754) 
 University of California Berkeley, Department of Physics, Berkeley, USA (GRID:grid.47840.3f) (ISNI:0000 0001 2181 7878); Lawrence Berkeley National Lab, Engineering Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551); Virginia Polytechnic Institute and State University, Center for Neutrino Physics, Blacksburg, USA (GRID:grid.438526.e) (ISNI:0000 0001 0694 4940) 
 Lawrence Berkeley National Lab, Engineering Division, Berkeley, USA (GRID:grid.184769.5) (ISNI:0000 0001 2231 4551) 
Pages
243
Publication year
2024
Publication date
Mar 2024
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2952110370
Copyright
© The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.