It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Difficult-to-machine materials (DMMs) are extensively applied in critical fields such as aviation, semiconductor, biomedicine, and other key fields due to their excellent material properties. However, traditional machining technologies often struggle to achieve ultra-precision with DMMs resulting from poor surface quality and low processing efficiency. In recent years, field-assisted machining (FAM) technology has emerged as a new generation of machining technology based on innovative principles such as laser heating, tool vibration, magnetic magnetization, and plasma modification, providing a new solution for improving the machinability of DMMs. This technology not only addresses these limitations of traditional machining methods, but also has become a hot topic of research in the domain of ultra-precision machining of DMMs. Many new methods and principles have been introduced and investigated one after another, yet few studies have presented a comprehensive analysis and summarization. To fill this gap and understand the development trend of FAM, this study provides an important overview of FAM, covering different assisted machining methods, application effects, mechanism analysis, and equipment design. The current deficiencies and future challenges of FAM are summarized to lay the foundation for the further development of multi-field hybrid assisted and intelligent FAM technologies.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 State Key Laboratory of Intelligent Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology , Wuhan 430074, People’s Republic of China
2 School of Mechanical Engineering, Hubei University of Technology , Wuhan 430068, People’s Republic of China