Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study explores the efficacy of a sacrificial anode cathodic protection (SACP) system with an activated carbon-based conductive mortar in bridge structures. In the previous Part 1 study, various admixtures were compared to identify a conductive mortar for enhancing the performance of the SACP system, assessed through electrical conductivity, resistivity, cathodic protection (CP) potential and current, and 4 h depolarization potential. Part 2 extends the investigation by applying the developed conductive mortar containing activated carbon to an SACP system on an actual bridge structure in which corrosion has already been initiated. Before CP installation, the physical properties of the conductive mortar were evaluated to satisfy the standard requirements for concrete structure maintenance. Subsequently, zinc mesh and bulk anodes were installed on the bridge pier, followed by the application of a conductive mortar with an admixture ratio of 5%. Over a four-year period, performance was measured through regular 4 h depolarization potential checks and visual inspections. The SACP system with the conductive mortar demonstrated superior CP performance compared to the general mortar, confirming the effectiveness of the developed conductive mortar. Visual inspection after four years confirmed the workability of the SACP system with conductive mortar.

Details

Title
Development of Conductive Mortar for Efficient Sacrificial Anode Cathodic Protection of Reinforced Concrete Structures—Part 2: Four-Year Performance Evaluation in Bridges
Author
Ji-Myung Ha 1   VIAFID ORCID Logo  ; Jin-A, Jeong 2   VIAFID ORCID Logo  ; Jin, Chungkuk 3   VIAFID ORCID Logo 

 Conclinic E&C Co., Ltd., Seoul 05405, Republic of Korea; [email protected] 
 Division of Marine System Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea 
 Ocean Engineering and Marine Sciences, Florida Institute of Technology, Melbourne, FL 32901, USA 
First page
1797
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955496455
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.