Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Despite the increasing availability of genomic data and enhanced data analysis procedures, predicting the severity of associated diseases remains elusive in the absence of clinical descriptors. To address this challenge, we have focused on the KV7.2 voltage-gated potassium channel gene (KCNQ2), known for its link to developmental delays and various epilepsies, including self-limited benign familial neonatal epilepsy and epileptic encephalopathy. Genome-wide tools often exhibit a tendency to overestimate deleterious mutations, frequently overlooking tolerated variants, and lack the capacity to discriminate variant severity. This study introduces a novel approach by evaluating multiple machine learning (ML) protocols and descriptors. The combination of genomic information with a novel Variant Frequency Index (VFI) builds a robust foundation for constructing reliable gene-specific ML models. The ensemble model, MLe-KCNQ2, formed through logistic regression, support vector machine, random forest and gradient boosting algorithms, achieves specificity and sensitivity values surpassing 0.95 (AUC-ROC > 0.98). The ensemble MLe-KCNQ2 model also categorizes pathogenic mutations as benign or severe, with an area under the receiver operating characteristic curve (AUC-ROC) above 0.67. This study not only presents a transferable methodology for accurately classifying KCNQ2 missense variants, but also provides valuable insights for clinical counseling and aids in the determination of variant severity. The research context emphasizes the necessity of precise variant classification, especially for genes like KCNQ2, contributing to the broader understanding of gene-specific challenges in the field of genomic research. The MLe-KCNQ2 model stands as a promising tool for enhancing clinical decision making and prognosis in the realm of KCNQ2-related pathologies.

Details

Title
MLe-KCNQ2: An Artificial Intelligence Model for the Prognosis of Missense KCNQ2 Gene Variants
Author
Saez-Matia, Alba 1   VIAFID ORCID Logo  ; Ibarluzea, Markel G 2 ; M-Alicante, Sara 3 ; Muguruza-Montero, Arantza 1   VIAFID ORCID Logo  ; Nuñez, Eider 3   VIAFID ORCID Logo  ; Ramis, Rafael 2 ; Ballesteros, Oscar R 4   VIAFID ORCID Logo  ; Lasa-Goicuria, Diego 5 ; Fons, Carmen 6 ; Gallego, Mónica 7   VIAFID ORCID Logo  ; Casis, Oscar 7   VIAFID ORCID Logo  ; Aritz Leonardo 2   VIAFID ORCID Logo  ; Bergara, Aitor 8   VIAFID ORCID Logo  ; Villarroel, Alvaro 1 

 Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain; [email protected] (A.S.-M.); [email protected] (S.M.-A.); [email protected] (A.M.-M.); [email protected] (E.N.) 
 Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain[email protected] (R.R.); [email protected] (O.R.B.); ; Donostia International Physics Center, 20018 Donostia, Spain; [email protected] 
 Instituto Biofisika, CSIC-UPV/EHU, 48940 Leioa, Spain; [email protected] (A.S.-M.); [email protected] (S.M.-A.); [email protected] (A.M.-M.); [email protected] (E.N.); Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain[email protected] (R.R.); [email protected] (O.R.B.); 
 Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain[email protected] (R.R.); [email protected] (O.R.B.); ; Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018 Donostia, Spain 
 Donostia International Physics Center, 20018 Donostia, Spain; [email protected] 
 Pediatric Neurology Department, Sant Joan de Déu Hospital, Institut de Recerca Sant Joan de Déu, Barcelona University, 08950 Barcelona, Spain; [email protected] 
 Departamento de Fisiología, Universidad del País Vasco, UPV/EHU, 01006 Vitoria-Gasteiz, Spain; [email protected] (M.G.); [email protected] (O.C.) 
 Physics Department, Universidad del País Vasco, UPV/EHU, 48940 Leioa, Spain[email protected] (R.R.); [email protected] (O.R.B.); ; Donostia International Physics Center, 20018 Donostia, Spain; [email protected]; Centro de Física de Materiales CFM, CSIC-UPV/EHU, 20018 Donostia, Spain 
First page
2910
Publication year
2024
Publication date
2024
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955554940
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.