Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, we investigate the solvability of a boundary value problem for a heat and mass transfer model with the spatially averaged Rayleigh function. The considered model describes the 3D steady-state non-isothermal flow of a generalized Newtonian fluid (with shear-dependent viscosity) in a bounded domain with Lipschitz boundary. The main novelty of our work is that we do not neglect the viscous dissipation effect in contrast to the classical Boussinesq approximation, and hence, deal with a system of strongly nonlinear partial differential equations. Using the properties of the averaging operation and d-monotone operators as well as the Leray–Schauder alternative for completely continuous mappings, we prove the existence of weak solutions without any smallness assumptions for model data. Moreover, it is shown that the set of all weak solutions is compact, and each solution from this set satisfies some energy equalities.

Details

Title
Generalized Boussinesq System with Energy Dissipation: Existence of Stationary Solutions
Author
Baranovskii, Evgenii S  VIAFID ORCID Logo  ; Olga Yu Shishkina
First page
756
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
22277390
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955871412
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.