1. Introduction
Inflammation is a homeostatic defense of the body against any injurious stimulus, whether physical, chemical, or biological [1]. It is characterized by the presence of pain, redness, swelling, heat, and loss of function, and it can be classified as acute or chronic. Acute inflammation is a protective response that disappears within minutes, hours, or a few days after the stimulus or injury. It is characterized by the release of phagocytes and mediators that act on endothelial cells, causing changes in vascular permeability and generating the migration of leukocytes and plasma proteins to produce edema. At this level, a generalized systemic reaction is triggered, and it is dynamic to resolve the inflammation. If unresolved, there is a risk that the inflammation could become chronic [2].
Chronic inflammation is long-term, lasting months to years, and it is characterized by the infiltration of macrophages, lymphocytes, and plasma cells into the injured tissue. It is a proliferation of fibroblasts and small blood vessels [2] producing pro-inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin 6 (IL-6), and IL-8, and they stimulate reactive oxygen species (ROS), which are involved in modulating inflammation and activating the transcription factor NF-κβ [3].
Currently, in the treatment of inflammatory problems, steroidal (SAIDs) and non-steroidal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs (DMARDs) are used. However, their constant or long-term use produces undesirable side effects on the renal, liver, gastric, cardiovascular, and central nervous systems [4].
The progress and permanence of inflammation are the reasons for most chronic diseases, and inflammation presents one of the major threats to the health and longevity of persons. Chronic inflammation is involved in several diseases, including, for example, Alzheimer’s, type 2 diabetes, obesity, hypertension, and cancer [5].
Cancer is a disease where some cells of the body grow uncontrollably and can blowout to other organs of the body; this disease is caused by mutations, and the inflammation process produces oxidative stress, which causes damage to DNA and initiates signaling pathways, thus deregulating the cell cycle and increasing the risk of developing cancer [6]. The most common treatment for cancer is chemotherapy, which produces side effects and can result in resistance to the compounds used [7].
Since ancient times, many cultures have used plants for therapeutic purposes as an important source of natural products for treating different health problems, such as inflammation and cancer. Recently, the research on medicinal plants has been increasing [8]; about 80% of chemotherapeutic drugs have been obtained from plants in addition to anti-inflammatory compounds [9].
Ethnobotany
The Euphorbiaceae family is one of the most diverse families of flowering plants of angiosperms. This family contains around 6745 species in 317 genera, distributed mainly in the tropics and subtropics of the world [10]. In Mexico, Euphorbia species are found mainly in Nayarit, Veracruz, Chiapas, Michoacán, Oaxaca, Jalisco, Guerrero, Puebla, Sonora, Sinaloa, and Tamaulipas. Only about 250 species of the Euphorbia genus have been studied chemically and pharmacologically [11,12]; from these species, terpenes, flavonoids, alkaloids, coumarins, cyanogenetic glycosides, and mainly tannins have been isolated. Several reports show that some species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as tiglians, ingenanes, and dafnanes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-inflammatory and cytotoxic activity against some types of cancer [13,14,15].
The aim of this review is to provide an overview of scientific studies on 264 natural products isolated from 36 species of the Euphorbia genus with anti-inflammatory and cytotoxic activities reported from 2018 to September 2023. In Table 1 are shown the different species evaluated in this review.
In Table 2 is shown the anti-inflammatory activity of the compounds obtained from 16 species of Euphorbia.
In Figure 1, Figure 2, Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 are shown the structures of the compounds that evaluated their anti-inflammatory activity.
In Table 3 is shown the anti-cancer activity of the compounds obtained from 27 species of Euphorbia.
In Figure 11, Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17, Figure 18 and Figure 19 are shown the structures of the compounds that evaluated their cytotoxic activity.
2. Discussion
At present, the study of natural products obtained from medicinal plants continues to be of great interest because they provide a wide range of compounds with pharmacological activity against diseases, such as cancer, diabetes, and cardiovascular and chronic respiratory diseases, which, according to the World Health Organization (WHO), are the leading causes of mortality worldwide [84]. Furthermore, these diseases involve acute and chronic inflammatory processes. For this reason, it is of great importance to conduct reviews of scientific studies that provide an overview of the molecules isolated from plants used in traditional medicine, such as those of the Euphorbia genus. In this review, 68 studies were collected and analyzed regarding the anti-cancer and anti-inflammatory effects of 264 compounds isolated from 36 species of the Euphorbia genus. The anti-inflammatory activity of 104 compounds was evaluated for NO inhibition on macrophages or BV-2-cells stimulated with LPS using the Griess assay. Also, we found that compounds 97–107 have been investigated through vivo studies on ear edema in mice induced with TPA or paw edema induced with carrageenan or histamine. The cytotoxic activity of 147 secondary metabolites was evaluated against human cancer cell lines. Both activities, anti-inflammatory and cytotoxic effects, were evaluated only in 14 metabolites isolated from E. kansuensis and E. alatavica (49), E. kansui (50), E. lathyris (68, 69, 74, 80, 83, 87), E. maculate and E. pedroi (95), E. nerifolia (116, 117, 118, 119), and E. wallichii and E. fisheriana (136).
Some species of the genus Euphorbia produce latex, also known as “milky sap.” These latexes are characterized by containing a variety of compounds with pharmacological activities [85]. In Table 1 is shown that the latexes obtained from E. resinifera and E. umbellata were extracted with methanol and a solution of 1% H2SO4, respectively. From the methanol extract of E. resinifera, latexes were isolated Euphatexols C (126), Euphatexols D (127), Euphatexols E (128), Euphatexols F (129), and Euphatexols G (130); all of them had anti-inflammatory activity (Table 2) [72]. From the latex of E. umbellata was obtained Euphol (206); its cytotoxic activity was evaluated on the K-562 and HL-70 cancer cell lines (Table 3) [81].
The compounds included in this review are terpenes (95%), of which 159 are diterpenes, especially abietanes and lathyranes; also, other diterpenes classes have been isolated from plants of the Euphorbia genus, such as labdanes (1–3, 255–258), abietanes (35, 36, 49, 136, 149–155,158–161, 166–171,173–190, 195–197, 220, 221, 247, 253, 254), lathyranes (9–11, 68–89, 230, 234, 259), jatrophanes (120–123, 204, 211–219, 228, 229, 262), rosanes (15–21, 138), atisanes (7, 8), kauranes (137, 172, 191–194, 248), beyeranes (4–6), ingenanes (24, 25, 57–67, 241–243, 245, 263), daphnanes (162–165), tiglianes (26, 37, 48, 156, 157), premyrsinanes (198–201), and ingols (12–14, 244, 246).
Abietanes, rosanes, atisanes, beyeranes, and kauranes are characterized by three fused rings of six members, and some carbons are substituted with carbonyl or hydroxyl groups (264). Frequently, an olefin bond is found in the structure (Figure 20) [86].
Tiglianes, daphnanes, and ingenanes are characterized by a tetracyclic fused ring. Tiglianes usually have a configuration trans of the fusion of rings A and B and cis for the fusion of rings B and C. Daphnane diterpenoids have a tricyclic skeleton and the fusion of the rings A and B and B and C is trans [86]. Ingenanes diterpenes belong to the polycyclic diterpenoids related to daphnanes and tiglianes [87]; these diterpenes frequently contain hydroxyl and carbonyl groups and double bonds.
Lathyranes, jathropanes, and ingol are macrolides. Lathyranes diterpenes have a fused trycyclic system (5/11/3 members). Jathropanes have a bycyclo [9.3.0] pentadecane skeleton without a ring of cyclopropane. Ingol diterpenes are a subgroup of lathyranes characterized by a 5/11/3 carbon ring system with a 4,15-epoxy ring [88]. Their structure can contain hydroxyl, carbonyl, and ester groups and an olefin bond.
Labdanes are byciclic diterpenes with a branched six-carbon side chain [89]. Premyrsinanes are diterpenes with a [5-7-6-3] tetracyclic ring system [90].
These types of diterpenes show several pharmacological activities, some of which might be used clinically to treat health problems, such as cancer and inflammation [91].
Different researchers have found many diterpenes have anti-inflammatory activity through the inhibition of NF-κβ activation [86]; also, they diminish in macrophages stimulated with LPS, the production of TNF-α, NO, PGE2, the expression of COX-2, and iNOS mRNA [14].
For example, the factors L3 and L9 diminished the production of NO in LPS-stimulated macrophages by 61.85% and 63.68%, respectively. Also, both compounds had cytotoxic activity against BK (IC50 values of 7.9 and 6.1 µM, respectively) and BK-VIN (IC50 values of 8 and 5.7 µM, respectively) [58]. The compounds 1, 2, 70, and 137 promoted the suppression of iNOS expression and consequently decreased inflammation [17,54,83]. iNOS is the enzyme primarily responsible for the release of NO in inflammatory processes.
In another study, it was determined that the compounds Bisfischoid A and B (27, 28) isolated from E. fischeriana inhibited the activity of the soluble enzyme epoxide hydrolase (sEH) [30], and the compounds 29–34 obtained from E. formosana inhibited azurophilic degranulation of neutrophils [34]. On the other hand, compounds 70, 122, 123, and 137 diminished the levels of pro-inflammatory cytokines IL-1α, IL-6, and TNF-α [54,70,83]. The compounds 70 and 137 also inhibited the activation of COX-2 [54,83].
The compounds 18, 57, 61, and 69 suppressed NF-κβ, which is a light polypeptide gene enhancer in B cells produced and expressed by macrophages stimulated with LPS [53,54,55,60]; it promotes vasodilation and vascular permeability of blood vessels, facilitating the formation of edema and the recruitment of inflammatory cells around an injury [92]. For this reason, the compounds that decreased the levels of this polypeptide are candidates to be used in the treatment of inflammation.
Cynsaccatol L (50) isolated from E. lathyris shows the highest effect on the inhibition of the production of NO for macrophages stimulated with LPS. This compound regulated the levels of TNF-α and IFN-ɤ and promoted the phagocytosis of macrophages of the M2 subtype [46]
Cancer is a multifaceted ailment arising from mutations in cell proliferation. Interestingly, chronic inflammation has also been identified as a potential precursor to cancer in certain instances. The onset of cancer-promoting inflammation often precedes the formation of tumors. Notable examples of this connection can be found in certain conditions, such as Helicobacter-induced gastritis, chronic hepatitis, inflammatory bowel disease, and schistosomiasis-induced bladder inflammation. These conditions elevate the risk of developing several types of cancer, including, for example, colorectal, liver, stomach, and bladder cancer [93].
Many Euphorbia species contain compounds with cytotoxic activity. The mechanism of action of several types of diterpenoids has been investigated, and the results show that these compounds could have cytotoxic activity via induction of apoptosis through the suppression of IL-6-induced and STAT3 activation, the inhibition of topoisomerase II, and the impedance of NF-κβ activation [86].
The cytotoxic activity was evaluated mainly in the following cell lines: HepG2, MCF-7, C4-2B, CA2B/ENZR, A549, HL-60, HeLa, and more. Table 3 shows that the best cytotoxic effect on an MTT assay was obtained with 142–144 from E. dendroides on Huh-7, 156–159, 163, 173, 174, and 176 from E. fischeriana on HeLa, C4-2B, and CA-2B/ENZR, 210 from E. grantii on MCF7 and MCF7/ADR, 226 from E. kansuensis on RKO and MDA-MB-231, 230–231 from E kansui on GSC3, 242–243, 245, and 248 from E. neriifolia on A549, HL-60, and HepG2, 253 and 259 from E. pekinensis on K-562 and U-937, and 206 from E. tirucalli on DLD1, LNCaP, 5637, KYSE30, KYSE410, and P5N-1. Also, 136 isolated from several Euphorbia species demonstrated cytotoxic activity against HL-60, SMHC-7721, C4-2B, and C4-2B/ENZR.
The compounds factor L1 and Euphosorophane I were evaluated with tests other than cytotoxicity in cancer cell lines [51,75]. Euphosorophane I (262) inhibited the function of transmembrane P-glycoprotein (P-gp), which has the function of an energy-dependent “drug pump.” Its overexpression promotes multidrug resistance (MDR). This effect was tested on drug-resistant MCF-7/ADR cells; it was found that compound 262 exhibited a P-gp-mediated MDR reversal [75].
The anti-cancer activity of factor L1 was studied in in vivo and in vitro models. This molecule presented cytotoxic and antitumor activity downregulating DDR1 in the tumor of SHI mice. This compound avoids anti-liver metastasis. Factor L1, Euphylbenzoate, and Glutinol induced cell death through apoptosis [39,51,73].
Factor L2 had a potent cytotoxic activity on A549 and induced apoptosis via the mitochondrial pathway, promoting the release of cytochrome C and the activation of caspase 3 and 9 [94]
3. Methods
The literature search of documents and reviews on the anti-inflammatory and cytotoxic studies of the different species of Euphorbia was conducted in the PubMed, Springer, Science Direct, and Google Scholar online databases. The recovered information that is presented was published in the last 5 years. Only studies on isolated compounds were considered. Different in vivo models were used to establish anti-inflammatory activity. With respect to the cytotoxic activity, different in vitro colorimetric methods were used, as well as different cancer cell lines (murine, human, and resistant). Table 1 shows the species, the collection place, the part of the plant, and the bioactive extract studied to isolate the active compounds.
4. Conclusions
In summary, plants of the Euphorbia genus are a source of compounds with anti-inflammatory and anti-cancer activities. Furthermore, different compounds shown in this review might lead to possible new therapies for inflammation and cancer to increase the options for the treatment of inflammatory diseases that afflict the world. Thirty-six species of Euphorbia were studied, and the specie that predominated was E. lathyris, which was researched in ten studies.
One hundred forty-one compounds included in this review have anti-inflammatory activity; one hundred forty-three natural products have anti-cancer effects; and ten molecules present both activities.
This review shows that 159 diterpenes were isolated from the Euphorbia genus, including 55 abietanes, 27 lathyranes, 17 ingenanes, 16 jathropanes, 8 rosanes, 7 kauranes, 7 labdanes, 5 tiglianes, 5 permyrsinanes, 4 daphnanes, 3 beyeranes, 2 atisanes, and 3 others.
Cynsaccatol (50) isolated from E. lathyris shows the greatest effect on the inhibition of the production of NO for macrophages stimulated with LPS. (4R,5S,8S,9R,10S,13R,16S)-ent-16α,17-dihydroxy-19-tigloyloxykauran-3-one (248) and Euphorbia factors L1 and L3 have good cytotoxic activity. These results show that the compounds 50, 68, 69, and 248 are promising to develop new drugs.
Conceptualization, S.P.-G. and N.C.-X.; methodology, S.R.-J.; software, S.R.-J., D.O.S.-S. and L.S.-P.; validation, S.R.-J., S.P.-G. and N.C.-X.; investigation, S.R.-J., M.G.V.-C., D.O.S.-S., J.P.-R., L.S.-P., S.P.-G. and N.C.-X.; data curation, S.P.-G. and S.R.-J.; writing—original draft preparation, S.P.-G., M.G.V.-C. and D.O.S.-S.; writing—review and editing, S.P.-G. and N.C.-X.; visualization, M.G.V.-C., D.O.S.-S. and L.S.-P.; supervision, S.P.-G. and N.C.-X. All authors have read and agreed to the published version of the manuscript.
Not applicable.
Not applicable.
Not applicable.
The authors declare no conflicts of interest.
Footnotes
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.
Figure 4. Structures of compounds isolated from E. helioscopia and E. kansuensis.
Figure 10. Structures of compounds isolated from E. resinifera, E. thymifolia, and E. wallichii.
Figure 11. Structures of compounds isolated from E. alatavica, E. balsamifera, E. dendroides, and E. denticulata.
Figure 14. Structures of compounds isolated from E. gedrosiaca, E. glomerulans, E. grandicornis, and E. grantii.
Figure 16. Structures of compounds from E. hypericifolia, E. kansuensis, E. kansui, and E. kopetdaghi.
Figure 17. Structures of compounds isolated from E. lactea, E. lathyris, E. microsphaera, and E. neriifolia.
Figure 19. Structures of compounds isolated from E. saudiarabica, E. schimperiana, E. sororia, E. stracheyi, and E. tirucalli.
Species of Euphorbia analyzed in this review, 2018–2023.
Species | Collection Place | Plant Material | Extract Solvent |
---|---|---|---|
E. alatavica [ | China | Stems | Acetone |
E. antiquorum [ | Thailand | Aerials parts | Methanol |
China | Stems | Methanol | |
E. atoto [ | China | Aerial parts | Ethanol |
E. balsamifera [ | Saudi Arabia | Aerial parts | Ethanol |
E. dendroides [ | Egypt | Aerial parts | Methanol |
E. denticulata [ | Iran | Whole plant | Acetone |
E. ebracteolata [ | China | Roots | Ethanol |
Korea | Methanol | ||
China | Ethanol | ||
E. fischeriana [ | Mongolia | Roots | Ethanol |
China | Acetone | ||
E. formosana [ | Taiwan | Roots | Methanol |
E. gedrosiaca [ | Iran | Aerial parts | Dichloromethane: Acetone |
E. glomerulans [ | China | Whole plant | Acetone |
E. grandicornis [ | South Africa | Aerial parts and roots | Dichloromethane |
Hungary | Aerial parts | Methanol | |
E. grantii [ | Egypt | Aerial parts | Methanol |
E. helioscopia [ | China | Whole plant | Ethanol |
Methanol | |||
Aerials parts | Ethanol | ||
E. hypericifolia [ | China | Aerial parts | Ethanol |
E. kansuensis [ | China | Roots | Ethanol |
E. kansui [ | China | Roots | Ethanol |
E. kopetdaghi [ | Iran | Aerial parts | Dichloromethane: Acetone 2:1 |
E. láctea [ | Thailand | Aerial parts | Ethanol |
E. lathyris [ | China | Seeds | Ethanol |
Petroleum Ether | |||
Ethanol | |||
Ethanol | |||
Petroleum Ether | |||
Ethanol | |||
Ethanol | |||
Ethanol | |||
South Korea | Seeds | Methanol | |
E. maculata [ | China | Whole plant | Ethanol |
Japan | Whole plant | Methanol | |
E. microsphaera [ | Iran | Aerial parts | Chloroform |
E. neriifolia [ | Taiwan | Stems | Ethanol |
China | Aerial parts | Ethanol | |
Whole plant | Acetone: Water 3:1 | ||
E. pedroi [ | Portugal | Aerial parts | Methanol |
E. pekinensis [ | China | Roots | Ethanol |
E. peplus [ | China | Leaves | Methanol |
E. pulcherrima [ | Pakistan | Whole plant | Methanol |
E. resinifera [ | China | Latex | Methanol |
E. saudiarabica [ | Saudi Arabia | Aerial parts | Methanol |
E. schimperiana [ | Saudi Arabia | Aerial parts | Ethanol |
E. sororia [ | China | Fructus | Ethanol |
E. stracheyi [ | China | Whole plant | Methanol |
E. thymifolia [ | China | Aerial parts | Ethanol |
E. tirucalli [ | Vietnam | Whole plant | Ethanol |
Brazil | Sap | Hexane | |
E. umbellata [ | Brazil | Latex | H2SO4 1% |
E. wallichii [ | China | Whole plant | Methanol |
The anti-inflammatory activity of the compounds obtained from 16 species of Euphorbia.
Species | Active Compounds | Biological Model | Results | Ref. |
---|---|---|---|---|
E. antiquorum | Ent-15-Acetoxylabda-8(17),13E-diene-3-one (1) | Griess assay | IC50 (μM)11.7 | [ |
Ent-15-Oxolabda-8(17),13E-diene-3-one (2) | 12.5 | |||
Ent-13-epi-8,13-epoxy-14α,15-isopropylidenedioxylabdane-3-one (3) | 44.6 | |||
Ent-3β,20-Epoxy-3α-hydroxy-15-beyeren-18-acetate (4) | 36.6 | |||
Ent-3β,20-epoxy-3α-hydroxy-18-norbeyer-15-ene (5) | 40.4 | |||
Rhizophorin B (6) | 16.1 | |||
Ent-15-Acetoxylabda-8(17),13E-diene-3-one (1) | Western blot iNOS | IC50 (μM) | ||
Ent-15-Oxolabda-8(17),13E-diene-3-one (2) | 12.5 | |||
Euphorin A (7) | Griess assay | IC50 (µM) | [ | |
Euphorin B (8) | 41.4 | |||
Euphorin D (9) | 32.0 | |||
Euphorin E (10) | 40.7 | |||
3,12-O-diacetyl-7-O-[(E)-2-methyl-2-butenoyl]-8,12-diepjing-ol (11) | 49.2 | |||
3,12-diacetyl-8-benzoylingol (12) | 14.5 | |||
12-O-acetyl-8-O-benzoylingol-3-tiglate (13) | 14.9 | |||
Ent-(3α,5β,8α,9β,10α,12α)-3-hydroxyatis-16-en-14-one (14) | 31.6 | |||
E. atoto | 3-oxo-ent-trachyloban-17-oic acid (15) | Griess assay | IC50 (µM) | [ |
Ent-kauran-16β-ol-3-one (16) | 16.00 | |||
Ent-16-hydroxy-3-oxosanguinane (17) | 33.41 | |||
E. ebracteolata | Ebractenoid F (18) | Griess assay | IC50 (µg/mL) | [ |
SEAP Assay | Decreased NF-kB. | |||
Western blot | Inhibited levels of IL-6 and IL1 | |||
Ebractenoid O (19) | Griess assay | IC50 (µM) | [ | |
Ebractenoid P (20) | 10.23 | |||
Ebractenoid Q (21) | 1.97 | |||
γ-pyrone-3-O-β- | 42.49 | |||
Tricyclohumuladiol (23) | 13.21 | |||
Ingenol (24) | 6.25 | |||
Ingenol-20-acetate (25) | 6.73 | |||
Langduin A4 (26) | 18.50 | |||
E. fischeriana | Bisfischoid A (27) | Assay Inhibition of sEH | IC50 (µΜ) | [ |
Bisfischoid B (28) | 10.29 | |||
E. formosana | Euphormin A (29) | Superoxide Anion | IC50 (µM) | [ |
Euphormin B (30) | 3.68 | |||
Larixol (31) | 3.81 | |||
Methylbrevifolincarboxylate (32) | 0.68 | |||
Brevifolin (33) | 1.39 | |||
Euphormins A (29) | Elastase Release | IC50 (µM) | ||
Euphormins B (30) | >10 | |||
Larixol (31) | >10 | |||
Methylbrevifolincarboxylate (32) | >10 | |||
Brevifolin (33) | >10 | |||
epi-manool (34) | 8.07 | |||
E. helioscopia | Euphohelide A (35) | Griess assay | IC50 (µM) | [ |
Helioscopinolide C (36) | 33.82 | |||
E. kansuensis | Euphkanoid A (37) | Griess assay RAW264.7 cells stimulated LPS | IC50 (µM) | [ |
Euphkanoid B (38) | 11.3 | |||
Euphkanoid C (39) | 5.92 | |||
Euphkanoid D (40) | 24.5 | |||
Euphkanoid E (41) | 35.3 | |||
Euphkanoid F (42) | 4.8 | |||
Prostratin (43) | 45.9 | |||
Phorbol-13-acetate (44) | 44.8 | |||
12-deoxyphorbol-13,20-diacetate (45) | 37.9 | |||
Phorbol (46) | 47.0 | |||
12-deoxyphorbol (47) | 35.7 | |||
12-deoxyphorbol-13-hexadecanoate (48) | 24.3 | |||
Helioscopinolide A (49) | 23.5 | |||
E. kansui | Cynsaccatol L (50) | Na+-K+-ATPase Analysis | Induced inactivation of AKT and ERK due to the downregulation of ATP1A1 expression | [ |
Cynotophylloside B (51) | Western blot | Inhibited the phosphorylation of AKT and mTOR, as well as upregulating the expression of LC3-Band p62 | ||
Cynsaccatol L (50) | Griess assay | IC50 (µM) | ||
Cynotophylloside B (51) | 9.10 | |||
Kidjolanin (52) | 30.7 | |||
Wilfoside G (53) | 1.77 | |||
Cynotophylloside J (54) | 17.39 | |||
Maslinic acid (55) | 17.38 | |||
Kidjoranin 3-O-α-diginopyranosyl-(1→4)-β- | 2.79 | |||
Euphorkan A (57) | Griess assay | IC50 (µM) | [ | |
Euphorkan B (58) | 10.4 | |||
3-O-(2,3-dimethylbutanoyl)-13-O-dodecanoyl-20-O-acetylingenol (59) | 5.69 | |||
3-O-(2,3-dimethylbutyryl)-13-O-n-dodecanoyl-13-hydroxyingenol (60) | 5.80 | |||
3-O-(2′E,4′E-decadienoyl) ingenol (61) | 2.78 | |||
3-O-(2′E,4′Z-decadienoyl) ingenol (62) | 10.6 | |||
3-O-(2′E,4′Z-decadienoyl)-20-O-acetylingenol (63) | 2.86 | |||
20-O-(2′E,4′E-decadienoyl) ingenol (64) | 9.05 | |||
20-O-(2′E,4′Z-decadienoyl) ingenol (65) | 9.45 | |||
20-O-acetyl-[5-O-(2′E,4′Z)-decadienoyl]-ingenol (66) | 4.60 | |||
13-O-docecanoylingenol (67) | 8.86 | |||
Euphorkan A (57) | Luciferase assay | IC50 (µM) | ||
3-O-(2′E,4′E-decadienoyl) ingenol (61) | 17.9 | |||
E. lathyris | Euphorbia Factor L1 (68) | Cytokines were determined using ELISA | SHI-induced inflammatory cell infiltration and IL-1β, IL-6, TNF-α were decreased | [ |
Western blot | Treatment with EFL1 downregulated DDR1 protein expression and immuno-reactivity in SHI mice, leading to the surge of CD4+, CD8+, and CD49b+ (NK) T cells | |||
Euphorbia Factor L3 (69) | Fibroblast-like synoviocytes | Ameliorated inflammatory phenotype FLSs (decreased viability, migration, invasion, and cytokine production) | [ | |
Collagen-induced arthritis (CIA) | Inhibited arthritic progression | |||
Wester blotting and immunofluorescence | Inhibited nuclear translocation of the p65 | |||
Molecular analysis | Target of EFL3 is RACI | |||
Euplarisan A (70) | Griess assay | IC50 (μM) | [ | |
Enzyme-linked immunoassay (ELISA) | Inhibited IL-1β, IL-6, and TNF-α | |||
Western blot assay | Decreased the expression of iNOS, COX-2, and p-IκBα | |||
Lathyranoic acid A (71) | Griess assay | % Inhibitory | [ | |
Euphorbia Factor L3 (69) | 61.85 | |||
Euphorbia Factor L31 (72) | 50.46 | |||
Euphorbia Factor L30 (73) | 50.01 | |||
Euphorbia Factor L9 (74) | 63.68 | |||
Euphorbia Factor L11 (75) | 76.66 | |||
Euphorbia Factor L3 (69) | Griess assay | IC50 (μM) | [ | |
Euphorbia Factor L29 (76) | Griess assay | IC50 (µM) | [ | |
Euphordracunculin C (77) | 12.7 | |||
Epoxyboetirane A (78) | 26.2 | |||
Euphorbia Factor L1 (68) | 12.7 | |||
Deoxy Euphorbia Factor L1 (79) | 47.0 | |||
Euphorbia Factor L2 (80) | 16.2 | |||
Euphorbia Factor L3 (69) | 15.0 | |||
Euphorbia Factor L7a (81) | 44.4 | |||
Euphorbia Factor L7b (82) | 23.9 | |||
Euphorbia Factor L8 (83) | 30.3 | |||
Euphorbia Factor L9 (74) | 11.2 | |||
Euphorbia Factor L17 (84) | 48.5 | |||
Euphorbia Factor L22 (85) | 16.6 | |||
Euphorbia Factor L23 (86) | 19.5 | |||
Euphorbia Factor L24 (87) | 18.2 | |||
Euphorbia Factor L25 (88) | 28.9 | |||
Jolkinol A (89) | 12.5 | |||
E. maculata | Spiromaculatol A (90) | Griess assay | IC50 (μM) | [ |
Spiromaculatol B (91) | 17.4 | |||
Spiromaculatol C (92) | 8.8 | |||
Euphomaculatoid B (93) | 31.3 | |||
Euphomaculatoid D (94) | 15.9 | |||
Spiropedroxodiol (95) | 12.7 | |||
Spiroinonotsuoxodiol (96) | 20.6 | |||
4-methyl-3,7-dihydroxy-7 (8 → 9) abeo-lanost-24 (28) -en-8-one (97) | Ear edema in induced mouse by TPA | ID50 (nM/ear) | [ | |
24-hydroperoxylanost-7,25-dien-3β-ol (98) | 356.3 | |||
3-hydroxycycloart-25-ene-24-hydroperoxide (99) | 301.7 | |||
3β-hydroxy-26-nor-9,19-cyclolanost-23-en-25-one (100) | 558 | |||
Cicloart-23(24)-ene-3β,25-hydroxy (101) | 355.7 | |||
(23E)-3,25-dihydroxythirucalla-7,23-diene (102) | 855 | |||
(23Z)-3,25-dihydroxy-thyrucalla-7,23-diene (103) | 1087 | |||
Obtusifoliol (104) | 87.7 | |||
4α, 14α-dimethyl-5α-ergosta-7,9 (11), 24 (28) -trien-3β-ol (105) | 363.1 | |||
Gramisterol (106) | 204 | |||
Cycloeucalenol (107) | 463.9 | |||
E. neriifolia | Neritriterpenol H (108) | Griess assay | All compounds inhibited IL-6 | [ |
Neritriterpenol I (109) | ||||
Neritriterpenol J (110) | ||||
Neritriterpenol K (111) | ELISA kits | Secretion in a dose-dependent manner | ||
Neritriterpenol L (112) | ||||
Neritriterpenol M (113) | ||||
Neritriterpenol N (114) | ||||
11-Oxo-kansenonol (115) | ||||
Sooneuphanone B (116) | Griess assay | % inhibition | [ | |
(23E)-eupha- 8,23-diene-3β,25-diol-7-one (117) | 27–39% | |||
(+)-(24S)-eupha-8,25-diene-3β,24-diol-7-one (118) | ||||
(24R)-eupha-8,25-diene-3β,24-diol-7-one (119) | ||||
E. peplus | Euphopepluanone N (120) | Griess assay | Inhibited NO production | [ |
Euphopepluanone B (121) | ||||
(2S*, 3S, 4R*, 5R*, 7S*, 13R*, 15R*)−3, 5, 7,15-tetraacetoxy-9, 14-dioxojatropha-6(17), 11E-diene (122) | ||||
11E-diene-9, 14-dione (123) | RT-qPCR analysis | Inhibited generation of cytokines (Il-6, IL-1β, TNF-α) | ||
(11E, 2S, 3S, 4R, 5R, 7S, 13R, 15R)−3, 5, 7,15-tetraacetoxy-9, 14-dioxojatropha-6(17), 11E-diene (122) | ||||
E. pulcherrima | Spinacetin (124) | Paw edema induced by Carrageen | % Edema inhibition | [ |
Patuletin (125) | 89.01 | |||
Spinacetin (124) | Paw edema histamine model | 78.33 | ||
Patuletin (125) | 94.00 | |||
E. resinifera | Euphatexols C (126) | Griess assay | IC50 (μM) | [ |
Euphatexols D (127) | 48.04 | |||
Euphatexols E (128) | 21.89 | |||
Euphatexols F (129) | 38.15 | |||
Euphatexols G (130) | 41.15 | |||
E. thymifolia | (1S, 2R, 5R, 6S, 7R, 8R, 10R, 11S)-4-oxo-2-methoxy-6-angeloyloxy-pesudoguai-8,12-olide (131) | Griess assay | IC50 (μM) | [ |
Minimolide B (132) | 15.32 | |||
4-oxo-2-ethoxy-6-tigloyloxy-pesudoguai-8,12-olide (133) | 7.15 | |||
6-O-angeloylplenolin (134) | 0.41 | |||
6-O-tigloyl-11,13-dihydrohelenalin (135) | 0.54 | |||
E. wallichii | Jolkinolide B (136) | Griess assay | IC50 (µM) | [ |
ELISA assay | IC50 (µM) | |||
Wallkaurane A (137) | Griess assay | IC50 (µM) | [ | |
ELISA assay | The production of inflammatory cytokines (IL-6 and TNF-α) | |||
Western blot | Increased the expression of the antiapoptotic marker Bcl-2. |
J774.A1 cells macrophages isolated from ascites of female mice with reticulum cell sarcoma; RAW264.7 cells are a macrophage-like, Abelson leukemia virus-transformed cell line derived from BALB/c mice; BV-2 cells are a unique type of microglial cells derived from C57/BL6 murine; Griess assay is a colorimetric method for the quantitative analysis of nitrites; CCK-8 assay: Cell Counting Kit-8 using WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt); LPS: Lipopolysaccharide or endotoxin is the major component of the outer membrane of Gram-negative bacteria; DDR1: Discoid in domain receptor 1; TPA: 12-O-Tetradecanoylphorbol-13-acetate; NO: nitric oxide; IL-1β: Proinflammatory cytokine 1β; IL-6: Proinflammatory cytokine 6; TNF-α: tumor necrosis factor α; NF-kβ: Nuclear Factor enhancer of kappa light chains of activated B cells; iNOS: Inducible Nitric Oxide Synthase; SOD: Superoxide Dismutase; sEH: Soluble Epoxide Hydrolase; RT-qPCR: Quantitative real-time PCR.
The cytotoxic activity of the compounds obtained from 27 species of Euphorbia.
Species | Compounds | Biological Model | Result | Ref |
---|---|---|---|---|
E. alatavica | 3α,7α,12α-trihydroxyisopimara-8(14), 15-diene (Alatavnol A) (138) | MTT assay | IC50 (µg/mL) | [ |
Helioscopinolide A (49) | HeLa | 23.802 | ||
Jolkinolide E (139) | MCF7 | 22.066 | ||
E. balsamifera | Kampferol-3,4′-dimethyl ether (140) | MTT assay | IC50 (µM) | [ |
E. dendroides | 23R/S-3β-hydroxycycloart-24-ene-23-methyl ether (141) | MTT assay | IC50 (µM) | [ |
24-methylene cycloartan-3β-ol (142) | HepG2 | 10.93 | ||
Cycloart-23-ene-3β,25-diol | HepG2 | 12.81 | ||
3β-hydroxy-cycloart-23-ene-25 | HepG2 | 12.72 | ||
24R/S-3β-hydroxy-25-methylenecycloartan-24-ol (145) | HepG2 | 15.54 | ||
E. denticulata | 12-taraxast-3β, 19, 21 (α)-triol (146) | MTT assay | IC50 (µM) | [ |
Cycloartane-3, 25-diol (147) | ||||
Cycloartane-3,24, 25-triol (148) | ||||
E. ebracteolata | Euphebracteolatin C (149) | CCK-8 assay | IC50 µM | [ |
Euphebracteolatin D (150) | HepG2 | 23.69 | ||
Euphebracteolatin E (151) | HepG2 | 38.96 | ||
Euphorpekone B (152) | HepG2 | 12.33 | ||
Jolkinolide B (136) | MTS assay | IC50 (µM) | [ | |
Euphoroid B (153) | MTT assay | IC50 (µM) | [ | |
Euphoroid C (154) | A549 | 28.7 | ||
Jolkinolide A (155) | A549 | 18.56 | ||
E. fischeriana | 12-deoxyphorbol-13-(9Z,12Z)-octadecadienoate (156) | MTT assay | IC50 (µM) | [ |
12-deoxyphorbol-13-dimethylpentadecanoate (157) | HeLa | 5.72 | ||
Euphonoid H (158) | MTT Assay | IC50 (µM) | [ | |
Euphonoid I (159) | MDA-MB-231 | 7.95 | ||
Raserrane A (160) | C4-2B | 34.09 | ||
Raserrane B (161) | C4-2B | 23.34 | ||
Fischerianin A (162) | MTT assay | IC50 (µM) | [ | |
Fischerianin B (163) | HepG2 | 11.23 | ||
Langduin A (164) | HepG2 | 14.47 | ||
Langduin A6 (165) | HepG2 | 16.55 | ||
Euphonoid A (166) | MTT assay | IC50 (µM) | [ | |
Euphonoid B (167) | C4-2B | 13.4 | ||
Euphonoid C (168) | C4-2B | 17.7 | ||
Euphonoid D (169) | C4-2B | 9.23 | ||
Euphonoid E (170) | C4-2B | 16.1 | ||
Euphonoid F (171) | C4-2B | 24.9 | ||
Euphonoid G (172) | C4-2B | 18.1 | ||
Euphonoid H (158) | C4-2B | 7.39 | ||
Raserrane B (161) | C4-2B | 16.3 | ||
11-oxo-ebracteolatanolide B (173) | C4-2B | 2.85 | ||
Caudicifolin (174) | C4-2B | 2.22 | ||
Jolkinolide A (155) | C4-2B | 10.1 | ||
17-hydroxyjolkinolide B (175) | C4-2B | 12.3 | ||
Jolkinolide B (136) | C4-2B | 4.43 | ||
Methyl-8,11-3-dihydroxy-12- | C4-2B | 4.95 | ||
7-dehydroabietanone (177) | C4-2B | 14.2 | ||
Abieta-8,11,13-triene (178) | C4-2B | 20.1 | ||
15-hydroxydehydroabietic acid (179) | C4-2B | 33.1 | ||
(4αS,10αS)-1,2,3,4,4α,10α-hexahydro-1,1,4α-trimethyl-7-(1-methyl)phenanthrene (180) | C4-2B | 36.2 | ||
2-phenanthrenyl] ethanone (181) | C4-2B | 34.0 | ||
(4βS,8αS)-2-phenanthrenecarboxylic acid,4β,5,6,7,8,8α,9,10-octahydro-3-hydroxy-4β,8,8-trimethyl-methyl ester (182) | C4-2B | 23.1 | ||
Isopimara-7,15-dien-3-one (183) | C4-2B | 21.9 | ||
Araucarol (184) | C4-2B | 19.2 | ||
Araucarone (185) | C4-2B | 16.0 | ||
Ent-3β, (13S)-dihydroxyatis-16- | C4-2B | 13.2 | ||
Ent-(13R,14R)-13,14-dihydroxyatis-16-en-3-one (187) | C4-2B | 18.8 | ||
Ent-atis-16-ene-3,14-dione (188) | C4-2B | 26.7 | ||
Ent-(13S)-13-hydroxyatis- | C4-2B | 30.5 | ||
3-oxoatisane-16α,17-diol (190) | C4-2B | 23.7 | ||
3α-hydroxy-ent-16-kauren (191) | C4-2B | 26.2 | ||
Ent-kaurane-3β,16β,17-triol (192) | C4-2B/ENZR | 21.7 | ||
Ent-16β-H-3-oxokauran-17-ol (193) | C4-2B | 22.8 | ||
Ent-kaurane-3-oxo-16β,17-diol (194) | C4-2B | 17.0 | ||
Fischerianoid A (195) | MTT assay | IC50 (µM) | [ | |
Fischerianoid B (196) | HL-60 | 28.78 | ||
Fischerianoid C (197) | MM-231 | 25.45 | ||
E. gedrosiaca | 13β-O-propanoyl-5α-O-methylbutanoyl-7α,13β-O-diacetyl-17α-O-nicotinoyl-14-oxopremyrsinane (198) | MTT assay | IC50 (µM) | [ |
3β-O-propanoyl-5α-O-benzoyl-7α,13β, 17α-O-triacetyl-14-oxopremyrsinane (199) | MDA-MB-231 | 22.2 | ||
3β-O-propanoyl-5α-O-isobutanoyl-7α,13β,17α-O-triacetyl-14-oxopremyrsinane (200) | MDA-MB-231 | 24.5 | ||
3β-O-propanoyl-5α-O-isobutanoyl-7α,13β-O-diacetyl-17α-O-nicotinoyl-14-oxopremyrsinane (201) | MDA-MB-231 | 27.3 | ||
2,5,7,10,15-O-pentaacetyl-3-O-propanoyl-14-O-benzoyl-13,17-epoxy-8-myrsinene (202) | MDA-MB-231 | 33.7 | ||
E. glomerulans | Euphoglomeruphane H (203) | MTT assay | IC50 (µM) | [ |
E. grandicornis | Hexyl(E)-3-(4-hydroxy-3-methoxyphenyl)-2-propenoate (204) | MTT assay | IC50 (µM) | [ |
6-Angeloyloxy-20-acetoxy-13-isobutanoyloxy-4,9-dihydroxytiglia-1,6-dien-3-one (205) | MTT assay | Cell viability (%) | [ | |
E. grantii | Eupha-8,24-dien-3β-ol (Euphol) (206) | SRB assay | IC50 (µM) | [ |
Cycloartenyl acetate (207) | MCF-7 | 25.3 | ||
Cycloartenol (208) | MCF-7 | 23.73 | ||
Epifriedelinyl acetate (209) | MCF-7 | 26.18 | ||
Euphylbenzoate (210) | MCF-7 | 3.47 | ||
Flow cytometry | The death is induced by apoptosis | |||
E. helioscopia | Euphohelinoid A (211) | SRB assay | IC50 (µM) | [ |
Euphohelinoid B (212) | HepG2 | 10.2 | ||
Euphohelinoid D (213) | HeLa | 34.5 | ||
Euphohelinoid F (214) | HepG2 | 12.5 | ||
Euphornin L (215) | HepG2 | 22.8 | ||
Helioscopianoid O (216) | HeLa | 26.2 | ||
Euphoscopin I (217) | HepG2 | 24.1 | ||
Euphoscopin J (218) | HepG2 | 14.9 | ||
Euphoscopin B (219) | HepG2 | 23.3 | ||
Euphelionolide F (220) | MTT assay | IC50 (µM) | [ | |
Euphelionolide L (221) | MCF-7 | 9.8 | ||
E. hypericifolia | Euphypenoid A (222) | MTT assay | IC50 (µM) | [ |
20(S),24(R)-20,24-epoxy-24-methyldammaran-3β-ol (223) | HCT-116 | 26.8 | ||
(23E)-25-methoxycycloart-23-en- | HCT-116 | 7.4 | ||
Isomotiol (225) | HCT-116 | 10.6 | ||
E. kansuensis | Euphorboside A (226) | MTT assay | IC50 (µM) | [ |
E. kansui | Wilfoside KIN (227) | MTT Assay | IC50 (µM) | [ |
Cynsaccatol L (50) | HepG2 | 12.61 | ||
Kanesulone A (228) | HepG2 | 18.24 | ||
3β,7β,15β-triacetyloxy-5α-benzoyloxy-2α,8α-dihydroxyjatropha-6(17),11E-diene-9, 14-dione (229) | HepG2 | 18.26 | ||
13-hydroxyingenol-3-(2,3-dimethylbutanoate)-13-dodecanoate (230) | HepG2 | >20 | ||
Euphol (206) | GSC-3 | 8.89 | ||
Lucidal (231) | GSC-3 | 4.71 | ||
E. kopetdaghi | 14-Nicotinyl-3,5,10,15,17-pentaacetyl-8-isobutanoyl-cyclomyrsinol-7- one (Kopetdaghinane A) (232) | MTT assay | IC50 (µM) | [ |
OVCAR-3 | 51.23 | |||
E. lactea | Friedelan-3β-ol (233) | HN22 | It induced an S-phase cell cycle arrest | [ |
E. lathyris | Euphorbia Factor L1 (68) | Tumour induced by Mouse 4T1 in | Decreased the generation of IL-β, IL-6, TNF-α | [ |
ELISA | Downregulated DDR1 protein expression and immuno-reactivity in SHI mice | |||
Western blot | No differences were detected in CD4+, CD8+, CD49b+ T cells, and Tregs between the DDR1-OE group and the DDR1-OE+EFL1 group | |||
15β-hydroxy-5α-acetoxy-3α-benzoyloxy-7β-nicotinoyloxylathyol (234) | MTT assay | IC50 (µM) | [ | |
Euphorbia Factor L2 (80) | MTT assay | IC50 (µM) | [ | |
Euphorbia Factor L3 (69) | A549 | 14.6 | ||
Euphorbia Factor L8 (83) | A549 | 11.8 | ||
Euphorbia Factor L9 (74) | A549 | 6.7 | ||
Euphorbia Factor L24 (87) | MTT assay | IC50 (µM) | [ | |
E. microsphaera | (3aR,4S,4aS,5R,7aS,9aS)-5-hydroxy-5,8-dimethyl-3-methylene-2-oxo- 2,3,3a,4,4a,5,6,7,7a,9a-decahydroazuleno [6,5-b] furan-4-yl acetate (Aryanin) (235) | MTT assay | IC50 (µg/mL) | [ |
E. neriifolia | Neritriterpenols A (236) | MTT assay | IC50 (µM) | [ |
(+)-(24R)-3β,24,25-trihydroxyeuph-8-en-7-one (Neritriterpenol B) (237) | WiDR | 47.2 | ||
Neritriterpenol E (238) | A549 | 45.7 | ||
(+)-(23R,24R)-epoxy-3α,25-dihydroxyeuph-8-en-7-one (Neritriterpenol F) (239) | HepG2 | 39.4 | ||
(+)-(24R)-24,25-dihydroxyeuph-8-en-3,7-dione (Neritriterpenol G) (240) | WiDR | 48.9 | ||
(23E)-eupha-8,23-diene-3β,25-diol-7-one (117) | A549 | 25.5 | ||
(+)-(24S)-eupha-8,25-diene-3β,24-diol-7-one (118) | A549 | 23.8 | ||
(24R)-eupha-8,25-diene-3β,24-diol-7-one (119) | A549 | 20.4 | ||
Sooneuphanone B (116) | A549 | 12.8 | ||
Phonerilin B (241) | SRB assay | IC50 (µM) | [ | |
Phonerilin E (242) | A549 | 4.9 | ||
Phonerilin F (243) | A549 | 3.8 | ||
Phonerilin H (244) | A549 | 7.5 | ||
20-O-diacetyl-ingenol (245) | HL-60 | 3.1 | ||
7,12-O-diacetyl-8-O-tigloylingol (246) | A549 | 6.4 | ||
Ent-atisane-3α,16α,17-triol (247) | MTT assay | IC50 (µM) | [ | |
(4R,5S,8S,9R,10S,13R,16S)- | HepG2 | 0.01 | ||
E. pedroi | Spiropedroxodiol (95) | MTT assay | IC50 (µM) | [ |
β-sitostenone (249) | Colo 205 | 46.6 | ||
Cycloart-23-ene-3β,25-diol (250) | L5178Y-PAR | 49.4 | ||
Helioscopinolide E (251) | L5178Y-PAR | 32.9 | ||
E. pekinensis | (11R,12S)-2,11,12-trihydroxy-ent-isopimara-1,7,15-trien-3-one (252) | CCK8 method | IC50 (µM) | [ |
Isopimara-7,15-dien-3β-ol (253) | K-562 | 0.87 | ||
Eupneria R (254) | U-937 | 30.5 | ||
Euphodane A (255) | U-937 | 5.9 | ||
Euphodane B (256) | U-937 | 36.7 | ||
Euphodane C (257) | U-937 | 24.5 | ||
Euphodane D (258) | U-937 | 25.1 | ||
Jolkinol B (259) | U-937 | 3.6 | ||
E. saudiarabica | Glutinol (260) | MTT assay | IC50 (µM) | [ |
E. schimperiana | 3,30-di-O-methylellagic acid (261) | MTT assay | IC50 (µg/mL) | [ |
E. sororia | Euphosorophane I (262) | P-gp ATPase activity assay | This compound reversed P-gp-mediated MDR cell (multidrug resistance) by inhibiting the ABCB1 drug efflux function in drug-resistant MCF-7/ADR cells | [ |
E. stracheyi | 3-O-benzoyl-20-deoxymgenol (263) | MTT assay | IC50 (µM) | [ |
E. tirucalli | Tirucadalenone (264) | MTT assay | IC50 (μg/mL) | [ |
Euphol (206) | MTT assay | IC50 (µM) | [ | |
Euphol (206) | MTS assay | IC50 (µM) | [ | |
E. umbellata | Euphol (206) | MTT assay | IC50 (µM) | [ |
MTT: 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide; MTS: 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)- 2-(4-sulfophenyl)- H-tetrazolium; SRB: sulforhodamine B assay; 5637: carcinoma from the urinary bladder; 1321N1: astrocytoma (malignant gliomas); 293T: clone derivative of the human embryonic kidney (HEK) 293 cell line; A375: melanoma; A431: squamous carcinoma; A549: lung cancer; A549/CDDP: Cisplatin resistance in lung cancer; BT20: breast cancer; BXPC-3: pancreatic adenocarcinoma; C33A: cervical cancer; C4-2B: prostate cancer; C4-2B/ENZR: prostate cancer enzalutamide resistant; Caco2: colon cancer; Capan-1: pancreatic adenocarcinoma; CASKI: epithelial cell from the cervix with epidermoid; CO115: colon carcinoma in vitro from solid xenografts; Colo205: colon carcinoma; Colo320: colon carcinoma; COLO679: skin melanoma; COLO858: skin melanoma; DAOY: medulloblastoma; DIFI: colorectal cancer; DLD1: colorectal adenocarcinoma; DU-145: prostate cancer; FADU: hypopharyngeal carcinoma; GAMG: glioblastoma; GSC12: glioma; GSC3: glioma; H292: pulmonary mucoepidermoid carcinoma; HAC: ovarian adenocarcinoma; HCB149: immortalized glioma; HCB2: Primary Glioma; HCC70: epithelial cell from primary ductal carcinoma; HCT116: colon cancer; HCT-15: colorectal adenocarcinoma; HCT-15/5-FU 5-: Fluorouracil Resistance in Colon Cancer; HeLa: Cervix Adenocarcinoma; HEP3B: hepatoma; HepG2: Hepatocarcinoma; HepG2/Adr: hepatoblastoma adriamycin resistant; HepG2/DOX: hepatoblastoma doxorubicin resistant; HL-60: promyelocytic leukemia; HL-70: lymphoblast promyeolocytic leukemia; HN13: squamous cell carcinoma of the oral tongue; HS587T: carcinoma of the breast; HT1376: urinary bladder carcinoma; HT29: colorectal adenocarcinoma; Huh-7: hepatoma; JEG3: choriocarcinoma; JHU-O22: Laryngeal carcinoma; K562: chronic myelogenous leukemia; KB: epithelial carcinoma; KB-VIN: epithelial carcinoma vincristine resistant; KLM-1: pancreatic cancer; KNS42: glioma; KYSE270: esophageal squamous carcinoma; KYSE30: squamous carcinoma; KYSE410: esophageal carcinoma; KYSE70: esophageal carcinoma; L5178Y-MDR: lymphoma multidrug resistant; L5178Y-PAR: lymphoma parental; LNCaP: prostate carcinoma; Lovo: prostate carcinoma; MCF-7: breast cancer; MCF-7ADR: breast cancer adriamycin resistant; MCF7/AZ: breast cancer; MCR: bladder cancer; MDA-MB-231: human breast cancer cell line; MDA-MB-468: breast cancer; Mia PaCa-2: pancreas carcinoma; MM-231: breast cancer; MRC-5: lung fibroblast (breast cancer); ONS76: medulloblastoma; OVCAR-3: ovarian adenocarcinoma; PA-1: ovarian teratocarcinoma; PANC-1: pancreatic carcinoma; PC-3: prostatic adenocarcinoma; PSN-1: pancreatic carcinoma; RES186: glioma; RES259: glioma; RKO: colon carcinoma; SCC14: head and neck squamous cell carcinoma cell lines; SCC-25: tongue squamous cell carcinoma; SCC4: tongue squamous cell carcinoma; SF188: glioblastoma; SIHA: uterine squamous cell carcinoma; SK-CO-10: colon cancer; SK-LU-1: lung adenocarcinoma; SKMEL-37: melanoma; SKMES1: lungs squamous cell carcinoma; SMMC-7721: hepatocellular carcinoma; SNB19: glioblastoma; SW1088: brain astrocytoma; SW1783: brain astrocytoma; SW480: colon cancer; SW620: colorectal cancer; SW626: ovary adenocarcinoma; T24: urinary bladder carcinoma; T47D: breast cancer; T98G: glioblastoma; U251: glioblastoma; U373: glioblastoma astrocytoma; U87-MG: glioblastoma; U-937: histiocytic lymphoma; UW479: glioma; WiDR: colorectal adenocarcinoma; WM1617: melanoma; WM278: melanoma; WM35: melanoma; WM852: melanoma; WM9: melanoma; WN793: melanoma.
References
1. González-Costa, M.; Padrón-González, A.A. La inflamación desde una perspectiva inmunológica: Desafío a la Medicina en el siglo XXl. Rev. Haban Cienc. Méd.; 2019; 18, pp. 30-44. Available online: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1729-519x2019000100030&lng=es&nrm=iso (accessed on 25 February 2024).
2. Kumar, V.; Abbas, A.K.; Fausto, N.; Mitchell, R.N. Robbins Basic Pathology; 10th ed. McGraw-Hill Interamericana: New York, NY, USA, 2018; pp. 31-68.
3. Yang, H.Z.; Wang, J.P.; Mi, S.; Liu, H.Z.; Cui, B.; Yan, H.M.; Lu, W. TLR4 activity is required in the resolution of pulmonary inflammation and fibrosis after acute and chronic lung injury. Am. J. Pathol.; 2012; 180, pp. 275-292. [DOI: https://dx.doi.org/10.1016/j.ajpath.2011.09.019]
4. Oscanoa-Espinoza, T.; Lizaraso-Soto, F. Antiinflamatorios no esteroides: Seguridad gastrointestinal, cardiovascular y renal. Rev. Gastroenterol. Perú; 2015; 35, pp. 63-71. Available online: http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1022-51292015000100007&lng=es (accessed on 25 February 2024).
5. Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol.; 2003; 3, pp. 23-35. [DOI: https://dx.doi.org/10.1038/nri978] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/12511873]
6. Fernandes, J.V.; Cobucci, R.N.; Jatobá, C.A.; Fernandes, T.A.; de Azevedo, J.W.; de Araújo, J.M. The Role of the Mediators of Inflammation in Cancer Development. Pathol. Oncol. Res.; 2015; 21, pp. 527-534. [DOI: https://dx.doi.org/10.1007/s12253-015-9913-z] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/25740073]
7. Campos-Xolalpa, N.; Alonso-Castro, Á.J.; Sánchez-Mendoza, E.; Zavala-Sánchez, M.A.; Pérez-Gutiérrez, S. Cytotoxic activity of the chloroform extract and four diterpenes isolated from Salvia ballotiflora. Rev. Bras. Farmacogn.; 2017; 27, pp. 302-305. [DOI: https://dx.doi.org/10.1016/j.bjp.2017.01.007]
8. Virshette, S.J.; Patil, M.K.; Somkuwar, A.P. A review on medicinal plants used as anti-inflammatory agents. J. Pharmacogn. Phytochem.; 2019; 8, pp. 1641-1646.
9. Schlaepfer, L.; Mendoza, E.J.A. Las Plantas Medicinales en la Lucha Contra el cáNcer, Relevancia Para México. Rev. Mex. Cienc. Farm.; 2010; 41, pp. 18-27. Available online: https://www.redalyc.org/articulo.oa?id=57916060003 (accessed on 25 February 2024).
10. Bittner, M.; Alarcón, J.; Aqueveque, P.; Becerra, J.; Hernández, V.; Hoeneise, M.; Silva, M. Estudio químico de especies de la familia Euphorbiaceae en Chile. Bol. Soc. Chil. Quim.; 2001; 46, pp. 419-431. [DOI: https://dx.doi.org/10.4067/S0366-16442001000400006]
11. Amtaghri, S.; Akdad, M.; Slaoui, M.; Eddouks, M. Traditional uses, pharmacological, and phytochemical studies of Euphorbia: A review. Curr. Top. Med. Chem.; 2022; 22, pp. 1553-1570. [DOI: https://dx.doi.org/10.2174/1568026622666220713143436]
12. Li, Y.N.; He, J.; Zhang, J.; Shi, Y.X.; Guo, L.B.; Peng, Z.C.; Xu, J.K. Existing knowledge on Euphorbia fischeriana Steud (Euphorbiaceae): Traditional uses, clinical applications, phytochemistry, pharmacology and toxicology. J. Ethnopharmacol.; 2021; 275, 114095. [DOI: https://dx.doi.org/10.1016/j.jep.2021.114095]
13. Martínez, G.M.; Jiménez, R.J.; Cruz, D.R.; Juárez, A.E.; García, R.; Cervantes, A.; Mejía, H.R. Los géneros de la familia Euphorbiaceae en México. (Parte A). An. Inst. Biol.; 2002; 73, pp. 155-196. Available online: https://www.redalyc.org/articulo.oa?id=40073205 (accessed on 25 February 2024).
14. Xu, Y.; Tang, P.; Zhu, M.; Wang, Y.; Sun, D.; Li, H.; Chen, L. Diterpenoids from the genus Euphorbia: Structure and biological activity (2013–2019). Phytochemistry; 2021; 190, 112846. [DOI: https://dx.doi.org/10.1016/j.phytochem.2021.112846] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34229224]
15. Zhao, H.; Sun, L.; Kong, C.; Mei, W.; Dai, H.; Xu, F.; Huang, S. Phytochemical and pharmacological review of diterpenoids from the genus Euphorbia Linn (2012–2021). J. Ethnopharmacol.; 2022; 298, 115574. [DOI: https://dx.doi.org/10.1016/j.jep.2022.115574]
16. Rozimamat, R.; Hu, R.; Aisa, H.A. New isopimarane diterpenes and nortriterpene with cytotoxic activity from Euphorbia alatavica Boiss. Fitoterapia; 2018; 127, pp. 328-333. [DOI: https://dx.doi.org/10.1016/j.fitote.2018.02.026] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29596962]
17. Choodej, S.; Hanthanong, S.; Aree, T.; Pudhom, K. Diterpenoids from the aerial parts of Euphorbia antiquorum and their efficacy on nitric oxide inhibition. Phytochemistry; 2020; 180, 112523. [DOI: https://dx.doi.org/10.1016/j.phytochem.2020.112523] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33007619]
18. An, L.; Liang, Y.; Yang, X.; Wang, H.; Zhang, J.; Tuerhong, M.; Li, D.; Wang, C.; Lee, D.; Xu, J. et al. NO inhibitory diterpenoids as potential anti-inflammatory agents from Euphorbia antiquorum. Bioorg. Chem.; 2019; 92, 103237. [DOI: https://dx.doi.org/10.1016/j.bioorg.2019.103237] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31536954]
19. Zhao, H.; Duan, R.J.; Kong, C.H.; Dai, H.F.; Mei, W.L.; Xu, F.Q.; Huang, S.Z. Two new anti-inflammatory trachylobane diterpenoids from Euphorbia atoto. J. Asian Nat. Prod. Res.; 2023; pp. 1-7. [DOI: https://dx.doi.org/10.1080/10286020.2023.2224232]
20. Aljubiri, S.M.; Mahgoub, S.A.; Almansour, A.I.; Shaaban, M.; Shaker, K.H. Isolation of diverse bioactive compounds from Euphorbia balsamifera: Cytotoxicity and antibacterial activity studies. Saudi J. Biol. Sci.; 2021; 28, pp. 417-426. [DOI: https://dx.doi.org/10.1016/j.sjbs.2020.10.025]
21. Hassan, A.R.; Ashour, A.; Amen, Y.; Nagata, M.; El-Toumy, S.A.; Shimizu, K. A new cycloartane triterpene and other phytoconstituents from the aerial parts of Euphorbia dendroides. Nat. Prod. Res.; 2022; 36, pp. 828-836. [DOI: https://dx.doi.org/10.1080/14786419.2020.1800693]
22. Shamsabadipour, S.; Zarei, S.M.; Ghanadian, M.; Ayatollahi, S.A.; Rahimnejad, M.R.; Saeedi, H.; Aghaei, M. A New Taraxastane triterpene from Euphorbia Denticulata with cytotoxic activity against prostate cancer cells. Iran. J. Pharm. Res.; 2018; 17, pp. 336-342. [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29755564]
23. Ding, K.; Zhang, Y.Y.; Yang, T.; Lian, W.W.; Xia, C.; Wang, W.P.; Zhang, W.K.; He, J.; Xu, J.K. New rosane diterpenoids and their analogs from Euphorbia ebracteolata Hayata. Chem. Biodivers.; 2023; 20, e202300013. [DOI: https://dx.doi.org/10.1002/cbdv.202300013]
24. Chun, J.; Mah, S.Y.; Kim, Y.S. Anti-inflammatory effect of ebractenoid f, a major active compound of Euphorbia ebracteolata Hayata, through inhibition of nuclear Factor-κB activation. Plants; 2023; 12, 2845. [DOI: https://dx.doi.org/10.3390/plants12152845] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37570999]
25. Ma, Y.L.; Tang, X.H.; Yuan, W.J.; Ding, X.; Di, Y.T.; Hao, X.J. Abietane diterpernoids from the roots of Euphorbia ebracteolata. Nat. Prod. Bioprospect.; 2018; 8, pp. 131-135. [DOI: https://dx.doi.org/10.1007/s13659-018-0159-9] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29557523]
26. Han, C.; Peng, Y.; Wang, Y.; Huo, X.; Zhang, B.; Li, D.; Leng, A.; Zhang, H.; Ma, X.; Wang, C. Cytotoxic ent-Abietane-type diterpenoids from the roots of Euphorbia ebracteolata. Bioorg. Chem.; 2018; 81, pp. 93-97. [DOI: https://dx.doi.org/10.1016/j.bioorg.2018.07.032] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30118990]
27. Bai, J.; Huang, X.Y.; Liu, Z.G.; Gong, C.; Li, X.Y.; Li, D.H.; Hua, H.M.; Li, Z.L. Four new compounds from the roots of Euphorbia ebracteolata and their inhibitory effect on LPS-induced NO production. Fitoterapia; 2018; 125, pp. 235-239. [DOI: https://dx.doi.org/10.1016/j.fitote.2017.12.006] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29221703]
28. Ma, X.M.; Mo, L.Y.; Ren, Z.P.; Fan, X.N.; Sun, P.H.; Tian, H.Y.; Yang, N.; Zi, J.C. New abietane and tigliane diterpenoids from the roots of Euphorbia fischeriana and their cytotoxic activities. J. Asian Nat. Prod. Res.; 2023; 25, pp. 519-527. [DOI: https://dx.doi.org/10.1080/10286020.2023.2197224]
29. Zhu, Q.F.; Xu, G.B.; Liao, S.G.; Yan, X.L. Ent-Abietane diterpenoids from Euphorbia fischeriana and their cytotoxic activities. Molecules; 2022; 27, 7258. [DOI: https://dx.doi.org/10.3390/molecules27217258]
30. Sun, C.P.; Chang, Y.B.; Wang, C.; Lv, X.; Zhou, W.Y.; Tian, X.G.; Zhao, W.Y.; Ma, X.C. Bisfischoids A and B, dimeric ent-abietane-type diterpenoids with anti-inflammatory potential from Euphorbia fischeriana Steud. Bioorg. Chem.; 2021; 116, 105356. [DOI: https://dx.doi.org/10.1016/j.bioorg.2021.105356]
31. Xie, R.; Xia, G.; Zhu, J.; Lin, P.; Fan, X.; Zi, J. Daphnane-type diterpenoids from Euphorbia fischeriana Steud and their cytotoxic activities. Fitoterapia; 2021; 149, 104810. [DOI: https://dx.doi.org/10.1016/j.fitote.2020.104810] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33359422]
32. Yan, X.L.; Zhang, J.S.; Huang, J.L.; Zhang, Y.; Chen, J.Q.; Tang, G.H.; Yin, S. Euphonoids A-G, cytotoxic diterpenoids from Euphorbia fischeriana. Phytochemistry; 2019; 166, 112064. [DOI: https://dx.doi.org/10.1016/j.phytochem.2019.112064]
33. Li, M.; He, F.; Zhou, Y.; Wang, M.; Tao, P.; Tu, Q.; Lv, G.; Chen, X. Three new ent-abietane diterpenoids from the roots of Euphorbia fischeriana and their cytotoxicity in human tumor cell lines. Arch. Pharm. Res.; 2019; 42, pp. 512-518. [DOI: https://dx.doi.org/10.1007/s12272-019-01151-y]
34. Lan, Y.H.; Chen, I.H.; Lu, H.H.; Guo, T.J.; Hwang, T.L.; Leu, Y.L. Euphormins A and B, new pyranocoumarin derivatives from Euphorbia formosana Hayata, and their anti-inflammatory activity. Molecules; 2022; 27, 1885. [DOI: https://dx.doi.org/10.3390/molecules27061885] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35335252]
35. Yazdiniapour, Z.; Sohrabi, M.H.; Motinia, N.; Zolfaghari, B.; Mehdifar, P.; Ghanadian, M.; Lanzotti, V. Diterpenoids from Euphorbia gedrosiaca as potential anti-proliferative agents against breast cancer cells. Metabolites; 2023; 13, 225. [DOI: https://dx.doi.org/10.3390/metabo13020225]
36. Hasan, A.; Liu, G.Y.; Hu, R.; Aisa, H.A. Jatrophane Diterpenoids from Euphorbia glomerulans. J. Nat. Prod.; 2019; 82, pp. 724-734. [DOI: https://dx.doi.org/10.1021/acs.jnatprod.8b00507] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30860373]
37. Kemboi, D.; Peter, X.; Langat, M.K.; Mhlanga, R.; Vukea, N.; de la Mare, J.A.; Noundou, S.X.; Krause, R.W.M.; Tembu, V.J. In vitro cytotoxic effects of chemical constituents of Euphorbia grandicornis Blanc against breast cancer cells. Sci. Afr.; 2021; 14, 90. [DOI: https://dx.doi.org/10.1016/j.sciaf.2021.e01002]
38. Tsai, J.Y.; Rédei, D.; Hohmann, J.; Wu, C.C. 12-Deoxyphorbol esters induce growth arrest and apoptosis in human lung cancer A549 cells via activation of PKC-δ/PKD/ERK signalling pathway. Int. J. Mol. Sci.; 2020; 21, 7579. [DOI: https://dx.doi.org/10.3390/ijms21207579]
39. Radi, M.H.; El-Shiekh, R.A.; El-Halawany, A.M.; Al-Abd, A.M.; Abdel-Sattar, E. In vitro cytotoxic study of Euphorbia grantii Oliv. aerial parts against MCF-7 and MCF-7ADR breast cancer cell lines: A bioactivity-guided isolation. ACS Omega; 2023; 8, pp. 18299-18305. [DOI: https://dx.doi.org/10.1021/acsomega.3c02091]
40. Yang, H.Y.; Yao, W.; Huang, P.Z.; Xu, H.; Ma, Q.; Chen, X.; Chen, J.J.; Gao, K. Euphohelides A-C, ent-abietane-type norditerpene lactones from Euphorbia helioscopia and their anti-inflammatory activities. J. Nat. Prod.; 2023; 86, pp. 1003-1009. [DOI: https://dx.doi.org/10.1021/acs.jnatprod.3c00041]
41. Lu, Y.B.; Luo, S.; Wang, Y.X.; Feng, Z.Y.; Gao, K.; Chen, J.J. Jatrophane diterpenoids with cytotoxic activity from the whole plant of Euphorbia helioscopia L. Phytochemistry; 2022; 203, 113420. [DOI: https://dx.doi.org/10.1016/j.phytochem.2022.113420]
42. Wang, W.P.; Jiang, K.; Zhang, P.; Shen, K.K.; Qu, S.J.; Yu, X.P.; Tan, C.H. Highly oxygenated and structurally diverse diterpenoids from Euphorbia helioscopia. Phytochemistry; 2018; 145, pp. 93-102. [DOI: https://dx.doi.org/10.1016/j.phytochem.2017.10.012]
43. Hu, R.; Sang, J.; Li, W.; Tian, Y.; Zou, M.F.; Tang, G.H.; Yin, S. Structurally diverse triterpenoids with cytotoxicity from Euphorbia hypericifolia. Fitoterapia; 2021; 151, 104888. [DOI: https://dx.doi.org/10.1016/j.fitote.2021.104888]
44. Xue, L.Y.; Chen, B.L.; Yuan, F.Y.; Zhu, Q.F.; Zhang, X.; Lin, Y.; Long, Q.D.; Liao, S.G. Six new tigliane diterpenoids with anti-inflammatory activity from Euphorbia kansuensis. Arab. J. Chem.; 2022; 85, 103807. [DOI: https://dx.doi.org/10.1016/j.arabjc.2022.103807]
45. Yan, X.L.; Sang, J.; Zhang, X.; Lin, Y.; Long, Q.D.; Zhu, Q.F.; Liao, S.G. Euphorboside A, a cytotoxic meroterpenoid glycoside with an unusual humulene-phloroglucinol skeleton from Euphorbia kansuensis. Fitoterapia; 2021; 153, 104966. [DOI: https://dx.doi.org/10.1016/j.fitote.2021.104966]
46. Feng, X.; Li, J.; Li, H.; Chen, X.; Liu, D.; Li, R. Bioactive C21 steroidal glycosides from Euphorbia kansui promoted HepG2 cell apoptosis via the degradation of ATP1A1 and inhibited macrophage polarization under co-cultivation. Molecules; 2023; 28, 2830. [DOI: https://dx.doi.org/10.3390/molecules28062830]
47. Li, J.C.; Li, S.Y.; Tang, J.X.; Liu, D.; Feng, X.Y.; Rao, K.R.; Zhao, X.D.; Li, H.M.; Li, R.T. Triterpenoids, steroids and other constituents from Euphorbia kansui and their anti-inflammatory and anti-tumour properties. Phytochemistry; 2022; 204, 113449. [DOI: https://dx.doi.org/10.1016/j.phytochem.2022.113449] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/36170888]
48. Zhang, J.S.; Weng, H.Z.; Huang, J.L.; Tang, G.H.; Yin, S. Anti-inflammatory ingenane diterpenoids from the roots of Euphorbia kansui. Planta Med.; 2018; 84, pp. 1334-1339. [DOI: https://dx.doi.org/10.1055/a-0646-4306] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29940661]
49. Riahi, F.; Dashti, N.; Ghanadian, M.; Aghaei, M.; Faez, F.; Jafari, S.M.; Zargar, N. Kopetdaghinanes, pro-apoptotic hemiacetialic cyclomyrsinanes from Euphorbia kopetdaghi. Fitoterapia; 2020; 146, 104636. [DOI: https://dx.doi.org/10.1016/j.fitote.2020.104636]
50. Wongprayoon, P.; Leelasart, S.; Jantham, J.; Pootaeng-on, Y.; Oekchuae, S.; Limpachayaporn, P.; Rayanil, K.; Charoensuksai, P. A triterpenoid friedelan-3β-ol isolated from Euphorbia lactea exhibited cytotoxic activity against HN22 cells by inducing an S-phase cell cycle arrest. J. Appl. Pharm. Sci.; 2022; 12, pp. 031-048. [DOI: https://dx.doi.org/10.7324/JAPS.2022.121004]
51. Wang, W.; Liu, Y.; Xiong, L.; Sun, D.; Wang, H.; Song, Z.; Li, Y.; Li, H.; Chen, L. Synthesis of Lathyrol PROTACs and evaluation of their anti-inflammatory activities. J. Nat. Prod.; 2023; 86, pp. 767-781. [DOI: https://dx.doi.org/10.1021/acs.jnatprod.2c00912]
52. Jiang, D.; Gao, X.; Tan, R.; Liu, X.; Zhu, Y.; Zhang, L. Euphorbia factor L1 suppresses breast cancer liver metastasis via DDR1-mediated immune infiltration. Aging; 2023; 15, pp. 9217-9229. [DOI: https://dx.doi.org/10.18632/aging.205030] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37709489]
53. Shi, H.; Li, S.; Geng, Y.; Fan, H.; Zhang, R.; Zhang, Y.; Pan, J.; Song, G.; Ge, L.; Xie, T. et al. Euphorbia factor L3 ameliorates rheumatoid arthritis by suppressing the inflammatory response by targeting Rac family small GTPase 1. Bioengineered; 2022; 13, pp. 10984-10997. [DOI: https://dx.doi.org/10.1080/21655979.2022.2066761]
54. Wang, Y.; Song, Z.; Guo, Y.; Xie, H.; Zhang, Z.; Sun, D.; Li, H.; Chen, L. Diterpenoids from the seeds of Euphorbia lathyris and their anti-inflammatory activity. Bioorg. Chem.; 2021; 112, 104944. [DOI: https://dx.doi.org/10.1016/j.bioorg.2021.104944] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33962090]
55. Zuo, Q.; Mu, H.Y.; Gong, Q.; Ding, X.; Wang, W.; Zhang, H.Y.; Zhao, W.M. Diterpenoids from the seeds of Euphorbia lathyris and their effects on microglial nitric oxide production. Fitoterapia; 2021; 150, 104834. [DOI: https://dx.doi.org/10.1016/j.fitote.2021.104834] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/33513430]
56. Wang, W.; Wu, Y.; Li, C.; Yang, Y.; Li, X.; Li, H.; Chen, L. Synthesis of new Lathyrane diterpenoid derivatives from Euphorbia lathyris and evaluation of their anti-inflammatory activities. Chem. Biodivers.; 2020; 17, e1900531. [DOI: https://dx.doi.org/10.1002/cbdv.201900531] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31825561]
57. Wang, J.X.; Wang, Q.; Zhen, Y.Q.; Zhao, S.M.; Gao, F.; Zhou, X.L. Cytotoxic Lathyrane-type diterpenes from seeds of Euphorbia lathyris. Chem. Pharm. Bull.; 2018; 66, pp. 674-677. [DOI: https://dx.doi.org/10.1248/cpb.c17-00946] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/29593174]
58. Teng, Y.N.; Wang, Y.; Hsu, P.L.; Xin, G.; Zhang, Y.; Morris-Natschke, S.L.; Goto, M.; Lee, K.H. Mechanism of action of cytotoxic compounds from the seeds of Euphorbia lathyris. Phytomedicine; 2018; 41, pp. 62-66. [DOI: https://dx.doi.org/10.1016/j.phymed.2018.02.001]
59. Wang, Q.; Zhen, Y.Q.; Gao, F.; Huang, S.; Zhou, X. Five new diterpenoids from the seeds of Euphorbia lathyris. Chem. Biodivers.; 2018; 15, e1800386. [DOI: https://dx.doi.org/10.1002/cbdv.201800386]
60. Lee, J.W.; Jin, Q.; Jang, H.; Kim, J.G.; Lee, D.; Kim, Y.; Hong, J.T.; Lee, M.K.; Hwang, B.Y. Lathyrane-type diterpenoids from the seeds of Euphorbia lathyris L. with inhibitory effects on NO production in RAW 264.7 cells. Chem. Biodivers.; 2018; 15, e1800144. [DOI: https://dx.doi.org/10.1002/cbdv.201800144]
61. Xia, R.F.; Su, J.C.; Yu, J.; Zha, H.J.; Wu, J.L.; Fu, X.N.; Cai, Q.; Wan, L.S. Anti-inflammatory lanostane triterpenoids with rearranged spirobi[indene] scaffold and their biogenetically related analogues from Euphorbia maculata. Phytochemistry; 2023; 211, 113682. [DOI: https://dx.doi.org/10.1016/j.phytochem.2023.113682]
62. Sun, Y.; Gao, L.L.; Tang, M.Y.; Feng, B.M.; Pei, Y.H.; Yasukawa, K. Triterpenoids from Euphorbia maculata and their anti-inflammatory effects. Molecules; 2018; 23, 2112. [DOI: https://dx.doi.org/10.3390/molecules23092112]
63. Azizi, K.; Hamedi, A.; Azarpira, N.; Hamedi, A.; Shahini, M.; Pasdaran, A. A new cytotoxic sesquiterpene lactone from Euphorbia microsphaera Boiss against human breast cancer (MCF-7) and human fibrosarcoma (HT1080) cells. Toxicon; 2021; 202, pp. 60-66. [DOI: https://dx.doi.org/10.1016/j.toxicon.2021.09.011]
64. Chang, S.S.; Huang, H.T.; Wei, W.C.; Lo, I.W.; Lin, Y.C.; Chao, C.; Liao, G.Y.; Shen, Y.C.; Chen, J.J.; Li, T.L. et al. Anti-inflammatory effect of euphane- and tirucallane-type triterpenes isolated from the traditional herb Euphorbia neriifolia L. Front. Chem.; 2023; 11, 1223335. [DOI: https://dx.doi.org/10.3389/fchem.2023.1223335]
65. Chang, S.S.; Huang, H.T.; Lin, Y.C.; Chao, C.H.; Liao, G.Y.; Lin, Z.H.; Huang, H.C.; Chun-Ling Kuo, J.; Liaw, C.C.; Tai, C.J. et al. Neritriterpenols A-G, euphane and tirucallane triterpenes from Euphorbia neriifolia L. and their bioactivity. Phytochemistry; 2022; 199, 113199. [DOI: https://dx.doi.org/10.1016/j.phytochem.2022.113199] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35427651]
66. Yuan, G.; Jun-Su, Z.; Hong-Chun, L.; Yan, Z.; Wei-Hang, Y.; Qun-Fang, L.; Guan-Wu, W.; Jin-Xin, Z.; Jian-Min, Y. Phonerilins A–K, cytotoxic ingenane and ingol diterpenoids from Euphorbia neriifolia. Tetrahedron; 2022; 123, 132955. [DOI: https://dx.doi.org/10.1016/j.tet.2022.132955]
67. Li, J.C.; Feng, X.Y.; Liu, D.; Zhang, Z.J.; Chen, X.Q.; Li, R.T.; Li, H.M. Diterpenoids from Euphorbia neriifolia and their related anti-HIV and cytotoxic activity. Chem. Biodivers.; 2019; 16, e1900495. [DOI: https://dx.doi.org/10.1002/cbdv.201900495] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31755643]
68. Ferreira, R.J.; Kincses, A.; Gajdács, M.; Spengler, G.; Dos Santos, D.J.V.A.; Molnár, J.; Ferreira, M.U. Terpenoids from Euphorbia pedroi as multidrug-resistance reversers. J. Nat. Prod.; 2018; 81, pp. 2032-2040. [DOI: https://dx.doi.org/10.1021/acs.jnatprod.8b00326] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30199257]
69. Chen, Y.Y.; Zeng, X.T.; Xu, D.Q.; Yue, S.J.; Fu, R.J.; Yang, X.; Liu, Z.X.; Tang, Y.P. Pimarane, abietane, and labdane diterpenoids from Euphorbia pekinensis Rupr. and their anti-tumor activities. Phytochemistry; 2022; 197, 113113. [DOI: https://dx.doi.org/10.1016/j.phytochem.2022.113113] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/35182782]
70. Li, Y.Y.; Yang, Y.; Sun, M.; Lu, Q.Y.; Pu, X.X.; Ran, X.; Li, D.M.; Wan, J.J.; Huang, J.Y.; Guan, S.P. et al. Jatrophane polyesters from the leaves of Euphorbia peplus with anti-inflammatory activity. Phytochem. Lett.; 2022; 49, pp. 114-119. [DOI: https://dx.doi.org/10.1016/j.phytol.2022.03.017]
71. Aljohani, A.S.M.; Alhumaydhi, F.A.; Rauf, A.; Hamad, E.M.; Rashid, U. In Vivo anti-inflammatory, analgesic, sedative, muscle relaxant activities and molecular docking analysis of phytochemicals from Euphorbia pulcherrima. Evid-Based Complement. Altern. Med.; 2022; 2022, 7495867. [DOI: https://dx.doi.org/10.1155/2022/7495867]
72. Li, M.M.; Qi, Y.R.; Feng, Y.P.; Liu, W.; Yuan, T. Euphatexols C - G, five new triterpenoids from the latex of Euphorbia resinifera. J. Asian Nat. Prod. Res.; 2022; 24, pp. 311-320. [DOI: https://dx.doi.org/10.1080/10286020.2021.1935894] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/34142616]
73. Fantoukh, O.I.; Al-Hamoud, G.A.; Nasr, F.A.; Almarfadi, O.M.; Hawwal, M.F.; Ali, Z.; Alobaid, W.A.; Binawad, A.; Alrashidi, M.; Alasmari, F. et al. Revisiting the flora of Saudi Arabia: Phytochemical and biological investigation of the endangered plant species Euphorbia saudiarabica. Metabolites; 2023; 13, 556. [DOI: https://dx.doi.org/10.3390/metabo13040556] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37110214]
74. Salha, M.A.; Khaled, M.; Samir, A.M.; Abdulrahman, I.A.; Kamel, H.S. Bioactive compounds from Euphorbia schimperiana with cytotoxic and antibacterial activities. S. Afr. J. Bot.; 2021; 141, pp. 357-366. [DOI: https://dx.doi.org/10.1016/j.sajb.2021.05.021]
75. Yang, H.; Mamatjan, A.; Tang, D.; Aisa, H.A. Jatrophane diterpenoids as multidrug resistance modulators from Euphorbia sororia. Bioorg. Chem.; 2021; 112, 104989. [DOI: https://dx.doi.org/10.1016/j.bioorg.2021.104989]
76. Zhu, H.; Ren, X.; Huang, Y.; Su, T.; Yang, L. Chemical constituents of Euphorbia stracheyi Boiss (Euphorbiaceae). Metabolites; 2023; 13, 852. [DOI: https://dx.doi.org/10.3390/metabo13070852] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/37512559]
77. Liu, J.L.; Yu, M.; Liao, H.B.; Liu, T.; Tan, Y.H.; Liang, D.; Zhang, G.J. Sesquiterpenes and diterpenes from Euphorbia thymifolia. Fitoterapia; 2019; 139, 104408. [DOI: https://dx.doi.org/10.1016/j.fitote.2019.104408] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31698058]
78. Duong, T.H.; Beniddir, M.A.; Genta-Jouve, G.; Nguyen, H.H.; Nguyen, D.P.; Nguyen, T.A.; Mac, D.H.; Boustie, J.; Nguyen, K.P.; Chavasiri, W. et al. Further terpenoids from Euphorbia tirucalli. Fitoterapia; 2019; 135, pp. 44-51. Erratum in Fitoterapia 2021, 149, 104825 [DOI: https://dx.doi.org/10.1016/j.fitote.2019.04.001] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/30995563]
79. Silva, V.A.O.; Rosa, M.N.; Miranda-Gonçalves, V.; Costa, A.M.; Tansini, A.; Evangelista, A.F.; Martinho, O.; Carloni, A.C.; Jones, C.; Lima, J.P. et al. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Investig. New Drug; 2019; 37, pp. 223-237. [DOI: https://dx.doi.org/10.1007/s10637-018-0620-y]
80. Silva, V.A.O.; Rosa, M.N.; Tansini, A.; Oliveira, R.J.S.; Martinho, O.; Lima, J.; Pianowski, L.F.; Reis, R.M. In vitro screening of cytotoxic activity of euphol from Euphorbia tirucalli on a large panel of human cancer-derived cell lines. Exp. Ther. Med.; 2018; 16, pp. 557-566. [DOI: https://dx.doi.org/10.3892/etm.2018.6244]
81. Cruz, L.S.; de Oliveira, T.L.; Kanunfre, C.C.; Paludo, K.S.; Minozzo, B.R.; Prestes, A.P.; Wang, M.; Fernandes, D.; Santos, F.A.D.; Manda, V.K. et al. Pharmacokinetics and cytotoxic study of euphol from Euphorbia umbellata (Bruyns) Pax latex. Phytomedicine; 2018; 47, pp. 105-112. [DOI: https://dx.doi.org/10.1016/j.phymed.2018.04.055]
82. Wang, Y.; Sun, D.; Jiang, Q.; Xiong, L.; Zhang, N.; Pan, Y.; Li, H.; Chen, L. Diterpenoids with anti-inflammatory activity from Euphorbia wallichii. Phytochemistry; 2023; 205, 113486. [DOI: https://dx.doi.org/10.1016/j.phytochem.2022.113486]
83. Wang, Y.; Jiang, Q.; Sun, D.; Zhang, N.; Lin, Y.; Li, H.; Chen, L. Ent-kauranes and ent-atisanes from Euphorbia wallichii and their anti-inflammatory activity. Phytochemistry; 2023; 210, 113643. [DOI: https://dx.doi.org/10.1016/j.phytochem.2023.113643]
84. WHO Available online: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed on 9 October 2023).
85. Benjamaa, R.; Moujanni, A.; Kaushik, N.; Choi, E.H.; Essamadi, A.K.; Kaushik, N.K. Euphorbia species latex: A comprehensive review on phytochemistry and biological activities. Front. Plant Sci.; 2022; 13, 1008881. [DOI: https://dx.doi.org/10.3389/fpls.2022.1008881]
86. Vasas, A.; Hohmann, J. Euphorbia Diterpenes: Isolation, Structure, Biological Activity, and Synthesis (2008–2012). Chem. Rev.; 2014; 114, pp. 8579-8612. [DOI: https://dx.doi.org/10.1021/cr400541j]
87. Appendino, G. Ingenane Diterpenoids. Prog. Chem. Org. Nat. Prod.; 2016; 102, pp. 1-90. [DOI: https://dx.doi.org/10.1007/978-3-319-33172-0_1]
88. Zhang, Y.; Fan, R.Z.; Sang, J.; Tian, Y.J.; Chen, J.Q.; Tang, G.H.; Yin, S. Ingol diterpenoids as P-glycoprotein-dependent multidrug resistance (MDR) reversal agents from Euphorbia marginata. Bioorg. Chem.; 2020; 95, 103546. [DOI: https://dx.doi.org/10.1016/j.bioorg.2019.103546]
89. Zhang, F.; Ma, C.; Che, Q.; Zhu, T.; Zhang, G.; Li, D. Extending the Structural Diversity of Labdane Diterpenoids from Marine-Derived Fungus Talaromyces sp. HDN151403 Using Heterologous Expression. Mar. Drugs; 2023; 21, 628. [DOI: https://dx.doi.org/10.3390/md21120628]
90. Yoshinaga, K.; Yokoshima, S. Convergent synthesis of the [5-7-6-3] tetracyclic core of premyrsinane diterpenes. Org. Biomol. Chem.; 2023; 4, pp. 724-727. [DOI: https://dx.doi.org/10.1039/D2OB02210A]
91. Vela, F.; Ezzanad, A.; Hunter, A.C.; Macías-Sánchez, A.J.; Hernández-Galán, R. Pharmacological Potential of Lathyrane-Type Diterpenoids from Phytochemical Sources. Pharmaceuticals; 2022; 15, 780. [DOI: https://dx.doi.org/10.3390/ph15070780]
92. Iwata, M.; Inoue, T.; Asai, Y.; Hori, K.; Fujiwara, M.; Matsuo, S.; Tsuchida, W.; Suzuki, S. The protective role of localized nitric oxide production during inflammation may be mediated by the heme oxygenase-1/carbon monoxide pathway. Biochem. Biophys. Rep.; 2020; 23, 100790. [DOI: https://dx.doi.org/10.1016/j.bbrep.2020.100790]
93. Greten, F.R.; Grivennikov, S.I. Inflammation and cancer: Triggers, mechanisms, and consequences. Immunity; 2019; 51, pp. 27-41. [DOI: https://dx.doi.org/10.1016/j.immuni.2019.06.025] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/31315034]
94. Lin, M.; Tang, S.; Zhang, C.; Chen, H.; Huang, W.; Liu, Y.; Zhang, J. Euphorbia factor L2 induces apoptosis in A549 cells through the mitochondrial pathway. Acta Pharm. Sin. B; 2017; 7, pp. 59-64. [DOI: https://dx.doi.org/10.1016/j.apsb.2016.06.008] [PubMed: https://www.ncbi.nlm.nih.gov/pubmed/28119809]
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Abstract
Euphorbia is a large genus of the Euphorbiaceae family. Around 250 species of the Euphorbia genus have been studied chemically and pharmacologically; different compounds have been isolated from these species, especially diterpenes and triterpenes. Several reports show that several species have anti-inflammatory activity, which can be attributed to the presence of diterpenes, such as abietanes, ingenanes, and lathyranes. In addition, it was found that some diterpenes isolated from different Euphorbia species have anti-cancer activity. In this review, we included compounds isolated from species of the Euphorbia genus with anti-inflammatory or cytotoxic effects published from 2018 to September 2023. The databases used for this review were Science Direct, Scopus, PubMed, Springer, and Google Scholar, using the keywords Euphorbia with anti-inflammatory or cytotoxic activity. In this review, 68 studies were collected and analyzed regarding the anti-inflammatory and anti-cancer activities of 264 compounds obtained from 36 species of the Euphorbia genus. The compounds included in this review are terpenes (95%), of which 68% are diterpenes, especially of the types ingenanes, abietanes, and triterpenes (approximately 15%).
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details




1 Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Ciudad de México 04960, Mexico;
2 Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
3 Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca 62209, Morelos, Mexico;
4 Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Ciudad de México 04960, Mexico;
5 Departamento de Atención a la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Ciudad de México 04960, Mexico;