Full text

Turn on search term navigation

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Titanium has a low density and high corrosion resistance. In order to achieve the goal of a lightweight material, and to extend the normal working hour of proton-exchange membrane fuel cells (PEMFCs), ultra-thin titanium plates were chosen to manufacture the key components—bipolar plates (BPs). For the purpose of overcoming the challenges of manufacturing with a large depth to width ratio, a multi-stage formation process was established with characteristics such as high efficiency and a lower price. In this study, the process parameters were examined through an experimental approach. The outcomes show that the channel formed by multistage forming is deeper than that formed by single-stage forming under the same displacement conditions. To achieve greater flow depths, it is recommended to increase the displacements as much as possible during both the first- and second-stage forming processes. The implementation of three-stage forming can effectively reduce the maximum thinning rates within flow channels while improving the overall deformation uniformity. This method deviates from traditional one-stage loading processes by adopting multi-stage loading instead. By employing appropriate mold designs, material deformation and flow can be enhanced throughout gradual loading processes, thereby preventing strain concentration and enhancing the ultimate formation height accuracy within micro-flow channels. Consequently, the proposed three-stage forming process proves highly appropriate for the mass production of BPs utilizing titanium plates.

Details

Title
Investigation into the Three-Stage Formation of Micro-Channels with Ultra-Thin Titanium Sheets Used for Proton-Exchange Membrane Fuel Cell Bipolar Plates
Author
Xie, Youfu 1 ; Xiao, Fang 2 ; Wang, Chunju 3   VIAFID ORCID Logo  ; Zhong, Qi 3 ; Wang, Yucheng 3 ; Hua, Risheng 3 

 Bosch Automotive Systems Co., Ltd., Wuxi 214028, China 
 Bosch Powertrain Systems Co., Ltd., Wuxi 214028, China 
 Robotics and Microsystems Center, School of Mechanical and Electric Engineering, Soochow University, Suzhou 215131, China 
First page
1071
Publication year
2024
Publication date
2024
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2955897301
Copyright
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.